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Abstract. This paper discusses the relevance of order-theoretical properties, such
as order dimension, for determining properties of Euler diagrams, such as whether
a given poset can be represented with or without shading. The focus is on linear,
tabular and rectangular Euler diagrams with shading and without split attributes
and constructions with subdiagrams and embeddings. Euler diagrams are dis-
tinguished from geometric containment orders. Basic layout strategies are sug-
gested.

1 Introduction

Euler diagrams are a well-known means for visualising sets and their partial orders
(posets). Automated drawing of Euler diagrams, however, is still a difficult challenge
(Alsallakh et al. 2016). Not all posets can be represented with all types of Euler dia-
grams. Thus it is desirable to determine properties of posets that affect which strategies
of diagram construction and layout are suitable. This paper considers order-theoretical
properties for such purposes.

Users tend to perceive Euler diagrams as more intuitive to read than Hasse1 dia-
grams (Priss 2020), but Hasse diagrams are much easier to automatically draw with a
computer due to a number of well-known layout algorithms (Dürrschnabel & Stumme
2021). Algorithms for Euler diagrams exist (Alsallakh et al. 2016), but there are still
many open questions about construction and layout. Maybe Hasse diagrams are in some
sense closer to order theory than Euler diagrams because they appear to depend less on
the 2-dimensional geometrical space in which they are drawn than Euler diagrams.

Two negative results are presented in this paper: first, even though the order di-
mension has relevance for Euler diagrams, it is not as helpful in determining whether a
diagram can be drawn or not as one might wish. Second, rectangular Euler diagrams are
not geometric containment orders. The reason why these two results are of interest is
because order theory is the mathematical foundation of both Hasse and Euler diagrams.
Thus one might assume that questions about Euler diagrams can be easily reduced to
order-theoretical questions which may have already been solved. In some respects that
is true. In particular, Formal Concept Analysis (FCA) which models binary relations as

1 The diagrams should not be named after Hasse because he did not invent them, but the name
is widely established in the literature.



mathematical lattices using order theory (Ganter & Wille 1999) has developed a large
repertoire of models and algorithms that are relevant for Euler diagrams. Nevertheless
this paper argues that applying FCA, and order theory in general, to Euler diagrams is
beneficial but not always sufficient.

All types of visualisations tend to have particular purposes and particular limits.
Euler diagrams are effective even for large amounts of data, if it is possible to extract
a small set of features (e.g. 5-10 features) which is then utilised to aggregate the data.
Euler diagrams are particularly suitable for displaying implications and dependencies
amongst features that relate to a small number of concepts, for example, for teaching
mathematics (Priss 2023). In other applications, Euler diagrams might not be an appro-
priate visualisation.

More details about and an overview of Euler diagrams are provided by Rodgers
(2014) and Alsallakh et al. (2016). This paper focuses on linear, tabular and rectangu-
lar Euler diagrams with shading and without split attributes. Linear Euler diagrams are
considered to have superior usability by Chapman et al. (2014). Petersen (2010) inves-
tigates conditions for determining whether a linear Euler diagram exists, however, she
uses a different terminology and does not refer to her diagrams as Euler diagrams. The
advantages of rectangular Euler diagrams were independently discussed by Paetzold
et al. (2023) and Priss (2023). Paetzold et al. (2023) present algorithms for automated
drawing but they ignore whether or not zones should be shaded.

The following section defines Euler diagrams and related terminology. Section 3 and
4 discuss the relevance of order dimension, lattice theory and geometric containment
orders. Section 5 elaborates on layout strategies. Section 6 concludes the paper.

2 Euler Diagrams

Venn, Euler and Hasse diagrams are different means for representing partially ordered
sets (cf. Priss, 2020). In the following definitions, two sets A and O are used. The
elements of A are called attributes, the elements of O are called objects. The powerset
of a set S is denoted by P (S) in this paper.

Definition 1. A zone set Z(A) over a set A is a subset of the powerset P (A). Elements
of Z(A) are called zones and elements of P (A) \ Z(A) are called gaps.

The running example for this section is a zone set Z?(A) = {{}, {a}, {b}, {c},
{a, b}, {b, c}, {a, b, c, d}} overA = {a, b, c, d} with gaps {d}, {a, d}, {a, c} and so on.
A challenge for a discussion about Euler diagrams is that an attribute contains zones
or, dually, is contained in zones if a zone is defined as a set of attributes. The same
holds for objects: they belong to a zone with its attributes or, dually, contain a set of
attributes. It is important to always be aware of which of the two dual perspectives is
currently employed. The notions of “attribute” and “object” are meant to differentiate
the perspectives and to avoid confusion with any meta-level use of the word “set” in a
discussion about Euler diagrams. In the running example, the attributes are considered
sets of objects as follows: a = {2, 3, 6}, b = {3, 5, 6, 7}, c = {4, 5, 6} and d = {6}
with O = {1, 2, 3, 4, 5, 6}.



As usual, a partially ordered set (or poset) (A,≤) is a binary relation that is re-
flexive, symmetric and transitive (i.e., ∀(a, b, c ∈ A) a ≤ a ∧ (a ≤ b ∧ b ≤ a ⇒
a = b) ∧ (a ≤ b ∧ b ≤ c ⇒ a ≤ c)). A linear order is a poset in which any two
elements are comparable (i.e., ∀(a, b ∈ A) a ≤ b ∨ b ≤ a). It is well-known from set
theory that (Z(A),⊆) is a poset. In the context of Euler diagrams, it is actually more
natural to consider the dual of (Z(A),⊆), in this paper denoted by (Z(A),≤) with
z1 ≤ z2 :⇐⇒ z1 ⊇ z2.

Figure 1 shows different visualisations of the running example (Z?(A),≤). The
Hasse diagram in 1C is drawn with a node for each element of Z?(A) and objects
attached to the lowest zone which they belong to. The other two types of diagrams in
Fig. 1 which are formally defined below are Euler diagrams (1B and 1D) and a formal
context (1A) which has objects as rows, attributes as columns and a cross if an object
is associated with an attribute. The relationship between formal contexts and Hasse
diagrams is explained by FCA and not further discussed in this paper. The equivalence
between the Euler and Hasse diagrams in Fig. 1 should be visually deducible from the
zones and their objects. The shaded region in the Euler diagrams is explained below.
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Fig. 1. Z?(A) as A) formal context, B) and D) tabular Euler diagrams, C) Hasse diagram

Definition 2. A formal context (O,A, I) is a binary relation I ⊆ O × A with two
functions φO : O → P (A) and φA : A→ P (O) with φO(o) = {a | a ∈ A, (o, a) ∈ I}
and φA(a) = {o | o ∈ O, (o, a) ∈ I}.

The two functions determine which attributes are associated with which object and
which objects are associated with which attribute. That means they read columns and
rows from a formal context represented as a table as in Fig. 1, such as φA({a}) =
{2, 3, 6}. The next definition connects zone sets with formal contexts.

Definition 3. A zone set Z(A) is represented as a formal context (O,A, I) if ∀(o ∈
O)φO(o) ∈ Z(A) and ∀(z ∈ Z(A)) ∃(o ∈ O)φO(o) = z. It is said that zone z
accommodates all objects o for which φO(o) = z holds.



In other words in a formal context, zones correspond to distinct rows. Each object
is accommodated by exactly one zone and each zone accommodates at least one object.
For example for Z?(A), zone {a} accommodates object 2. Because several rows of
a formal context can have the same crosses, a zone can also accommodate more than
one object. A gap {a, b, c} is not a row of a formal context. Zones accommodate all
objects that belong to an intersection of the zone’s attributes without objects that are
accommodated by lower zones according to (Z(A),≤). We distinguish between con-
tain and accommodate in this paper: the intersection a ∩ b = {3, 6} contains 3 and
6. But zone {a, b} accommodates only object 3 because 6 is accommodated by zone
{a, b, c, d}. Even though the attributes of a formal context do not need to be sets in all
applications, the function φA provides a natural means for interpreting them as sets.
In general, FCA assumes no structural difference between objects and attributes and
discusses many consequences arising from a dual relationship between objects and at-
tributes. FCA usually completes partial orders to lattices. But that is not required for
this paper. The following definitions establish Euler diagrams as used in Fig. 1 after
first defining the types of graphical elements that are used.

Definition 4. A curve is a Jordan curve (i.e. divides a plane into an interior and an
exterior) that does not intersect itself. A minimal region is an area of a diagram that
is enclosed by curve segments without containing any curve segments itself. Shading is
a graphical darkening applied to minimal regions so that a minimal region can have
exactly two states: either shaded or not shaded.

Definition 5. An Euler diagram E(Z(A)) is a graphical representation of Z(A) where
each a ∈ A is represented as a curve and each zone z is represented by a single non-
shaded minimal region that is contained in all curves a with a ∈ z. Shaded minimal
regions represent gaps. Each gap corresponds to at most one shaded minimal region. E
and E− are the sets of all zone sets that can be represented as Euler diagrams with and
without shading, respectively.

Because of the dual perspectives, the condition a ∈ z is correct because zones
are sets of attributes even though graphically a zone is contained in all of the curves
of its attributes. A similar definition can be constructed for Euler diagrams with split
attributes by allowing an attribute to correspond to several curves. Unless stated differ-
ently below, in this paper the notion Euler diagram always refers to a diagram without
split attributes.

Venn diagrams are special kinds of Euler diagrams that contain exactly as many
minimal regions as the elements of a powerset P (A). While Euler diagrams often have
fewer shaded minimal regions than gaps, Venn diagrams have as many shaded minimal
regions as gaps. Other authors use other definitions for Euler diagrams and discuss
several conditions for when to consider Euler diagrams well-formed (Flower, Fish, &
Howse 2008). In this paper, Definition 5 prohibits zones or gaps to be split into several
minimal regions but otherwise does not require any further conditions.

Figure 1B shows an Euler diagram with 3 curves, 7 zones (including the outer zone
which accommodates object 1) and a shaded minimal region for the gap {a, c}. Curves
are allowed to be concurrent, but then they are drawn slightly dislocated as in Fig. 1B
so that they can be visually distinguished. Priss (2023) argues that users will naturally



regard the tiny extra regions that sometimes occur between dislocated concurrent curves
as drawing errors and ignore them. Some concurrency can be avoided if curves that
coincide exactly with a zone set are textually added, such as adding “d := a ∩ b ∩ c”
in Fig. 1B instead of drawing a curve for d. Figure 1D displays the same information as
1B but uses a different notation. While Fig. 1B and 1D are structurally equivalent, it is
often possible to represent a single zone set with structurally differing Euler diagrams.
Therefore equivalence of diagrams is discussed further below. At a minimum, diagrams
that are obtained from each other by changing sizes without changing relative locations
should always be considered equivalent or identical. The next definition and lemma
explain that shading allows to use the same layout of an Euler diagram for different
zone sets.

Definition 6. A subdiagram of an Euler diagram is obtained by shading 0 or more
zones. A superdiagram of an Euler diagram is obtained by turning 0 or more shaded
minimal regions into (non-shaded) zones. An utmost diagram of an Euler diagram is a
superdiagram that does not contain any shaded minimal regions.

Lemma 1. I) Every Euler diagram has a unique utmost diagram.
II) If E1(Z1(A)) is a subdiagram of E(Z(A)) then Z1(A) ⊆ Z(A).
III) If Z1(A) ⊆ Z(A), then E1(Z1(A)) need not be a subdiagram of E(Z(A)).

Proof. I) Because the utmost diagram is obtained by removing any shading which is
a deterministic process. II) Shading turns zones into gaps and therefore reduces a set
Z(A) to a subset. III) Fig. 2 displays Z? \ {{b}}, but the Euler diagram in Fig. 2B is
not a subdiagram of Fig. 1D because in both diagrams the arrangement of the zones is
different (2 rows vs 1 row). The difference is not just a matter of shading. ut
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Fig. 2. For Z? \ {{b}}: A) Formal context, B) Linear Euler diagram, C) Hasse diagram

Fig. 2 shows an example where the corresponding Hasse diagram requires an el-
ement corresponding to gap ({b}), but the Euler diagram does not require a shaded
minimal region. Priss (2020) calls elements of posets that occur but do not accommo-
date any objects supplemental. In Hasse diagrams, supplemental elements are drawn
as non-filled circles and fulfil a similar role as shading in Euler diagrams. Priss (2020)
provides a more detailed discussion of the drawability of Hasse diagrams with or with-
out supplemental elements compared to Euler diagrams. It should be noted that in the
Hasse diagrams in the remainder of this paper, only the attributes (and not the zones) are



written into the diagrams. Euler diagrams tend to be easier to read if shading is avoided
but that is not always possible:

Lemma 2. I) All zone sets can be represented as Euler diagrams with shading.
II) Not all zone sets can be represented as Euler diagrams without shading, i.e. E− ⊂ E .

Proof. I) Venn diagrams are Euler diagrams according to Definition 5. Because Venn
already showed that powersets of any size can be represented as Venn diagrams (Baron
1969) all subsets of powersets can be represented as subdiagrams of Venn diagrams.
II) Depending on what shapes of curves are allowed, there are always zone sets that
can only be represented with shading. The example in Fig. 1B cannot be represented
without shading if the curves are rectangles. ut

Hasse diagrams are equivalent to each other if they represent the same zone set and
contain the same supplemental nodes or, visually, if they can be obtained from each
other by moving nodes freely around as long as the upwards direction of the edges is
not changed. For Euler diagrams it is not as easy to define equivalence because a zone
set can be represented as a subdiagram of different utmost diagrams and it is not as clear
what it means to transform one representation into another one. Thus, different kinds of
equivalence can be defined. The least and most restrictive ones are:

Definition 7. Two Euler diagrams E1(Z1(A)) and E2(Z2(A)) are zone-equivalent if
Z1(A) = Z2(A) and shading-equivalent if they are zone-equivalent and have the same
utmost diagram.

The following types of Euler diagrams are discussed in this paper:

Definition 8. A rectangular (Euler) diagram is an Euler diagram where all curves are
rectangles (ignoring the rounded corners) and all edges are either horizontal or verti-
cal. A tabular (Euler) diagram is a rectangular diagram where all curves are placed into
a single rectangle t so that for each curve (other than t) either the top and bottom edges
are concurrent with t or the left and right edges are concurrent with t. A linear (Euler)
diagram is a rectangular diagram where all curves are placed into a single rectangle t
so that for all curves the top and bottom edges are concurrent with t. E1, E1x1 and E2
are the sets of all zone sets that can be represented as subdiagrams of linear, tabular
and rectangular diagrams, respectively.

An important question is to determine E1, E1x1 and E2. As mentioned in the intro-
duction, Chapman et al. (2014) conclude that linear diagrams have superior usability
compared to other Euler diagrams, but they do not investigate rectangular Euler dia-
grams. Priss (2023) argues that rectangular diagrams have similar usability as linear
diagrams because users only need to trace a horizontal and a vertical direction. Priss
(2021) suggests that tabular diagrams in the styles of Fig. 1B or 1D are optimal be-
cause they combine the advantages of linear diagrams with a more compact design. In
particular Fig. 1D is just a table similar to many other kinds of tables that users are fa-
miliar with. Rectangular diagrams are furthermore easy to automatically process with
a computer because computing curve intersections (as needed for shading) is straight-
forward for rectangles. Linear diagrams are uniquely identified by their linear sequence



of zones. Tabular diagrams are uniquely identified by their sequence of zones for their
rows and columns. Definition 8 requires that a single attribute (other than one contain-
ing everything) does not occur both as a row and as a column label for tabular diagrams
because otherwise its shape would not be a rectangle. The relationship between linear
and tabular diagrams can be described as a direct product.

Definition 9. For zone sets Z1(A1) and Z2(A2) with A1 ∩ A2 = ∅, the direct product
is defined as a zone set Z1(A1)⊗ Z2(A2) = {z1 ∪ z2 | z1 ∈ Z1(A1), z2 ∈ Z2(A2)}.
A direct product of two Euler diagramsE1(Z1(A1)) andE2(Z2(A2)) withA1∩A2 = ∅
is an Euler diagram that is zone-equivalent to Z1(A1)⊗ Z2(A2).

Normally, direct products are Cartesian products, resulting in sets of tuples instead
of sets of sets. But because the zone sets Z1(A) and Z2(A) do not have any attributes in
common, the difference between sets and tuples is just a matter of notation. For Hasse
diagrams FCA drawing algorithms exist that construct a direct product from its factors.
For Euler diagrams such a graphical construction may not always be possible. But the
direct product of two linear diagrams always yields a tabular diagram.

Lemma 3. I) The utmost diagram of a tabular diagram is a direct product of two linear
diagrams. Thus E1x1 is determined by direct products of elements of E1.
II) A linear diagram with n attributes contains at most 2n zones.
III) A tabular diagram with n row attributes and m column attributes contains at most
4mn zones.

Proof. I) follows directly from Definition 8 because every cell of a table belongs to
exactly one row and one column. II) because each curve splits at most one zone at each
of its ends. III) because the linear diagram of the rows contains at most 2n and the linear
diagram of the columns at most 2m zones, thus 2n2m = 4mn. ut
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It follows that a powerset with 5 attributes (i.e. 25 = 32 elements) cannot be rep-
resented with a tabular diagram which would have at most 4 × 2 × 3 = 24 zones.
Figure 3 displays two rectangular diagrams with 5 attributes and slightly more than 24
zones. Rectangular diagrams are thus more powerful than tabular diagrams. But Fig. 3
also demonstrates that even small rectangular diagrams can already be difficult to read.



Venn diagrams without shading correspond to zone sets that are powersets without any
gaps. Venn already showed that at most 3 attributes can be represented with circular
curves (Baron 1969). A Venn diagram with at most 4 attributes can be represented with
rectangular curves (as shown in Fig. 3 if the curve for a is deleted). For larger numbers
of attributes the curves would need to be ellipses or concave shapes.

Lemma 4. I) All zone sets with at most 4 attributes are in E1x1.
II) If 3 attributes of a zone set each contain an object that the others do not contain and
a zone containing all 3 attributes exists, then the zone set is not in E1.
III) If 5 attributes of a zone set each contain an object that the others do not contain
and a zone containing all 5 attributes exists, then the zone set is not in E1x1.
IV) E1 ⊂ E1x1 ⊂ E2 ⊂ E .
V) For any number of attributes, there still exist some zone sets that are in E2.

Proof. I) Can be represented as a subdiagram of a Venn diagram for a powerset of
4 attributes. II) In a linear diagram, a zone {a, b} must be between zones {a} and
{b}. For 3 attributes it is not possible to arrange them so that {a, b, c} is between all
three attributes without one of the attributes being contained in the union of the other
attributes (as in Fig. 2). III) The utmost diagram would be a direct product of a linear
diagram with 2 and one with 3 attributes. The latter is not possible according to II).
IV) The inclusions ⊆ are obvious. They are proper subsets because: E1 ⊂ E1x1 follows
from II) and III). Fig. 3 shows examples that are in E2 but not in E1x1. A zone set that
is a powerset of a set of 5 attributes is in E but not in E2. V) Fig. 8B below shows
a rectangular diagram for a zone set with 6 attributes. The principle underlying that
figure can be extended to any number of attributes. ut

Euler diagrams can represent hundreds or thousands of objects if these are aggre-
gated in some form. But Lemma 4 indicates that 5 attributes might already pose a prob-
lem. In order to increase the number of possible representations, Euler diagrams with
split attributes can be defined. For example, the utmost diagram of Fig. 8C is a powerset
of 6 attributes where 2 attributes (c and f ) are split. It should be noted that in that case it
is still required that every zone occurs at most once in a diagram. Thus a split attribute
must be combined with other attributes in each instance in which it occurs.

Lemma 5. If Euler diagrams are defined with split attributes (modifying Def. 5), then
all zone sets can be drawn as tabular or even linear diagrams.

Proof. Because the attributes can be split, even a linear diagram can be drawn where
the zones occur in any random sequence and each column is labelled by all attributes
that belong to a zone. ut

Obviously, a random arrangement of zones as indicated in the proof is not useful
because it will not render diagrams that are easy for humans to interpret. Furthermore,
splitting attributes too many times certainly reduces readability. Therefore questions
arise as to how to minimise shading in cases where a representation is possible and
how to minimise splitting and shading otherwise. Criteria for determining whether rep-
resentations are possible at all are essential. The next two sections discuss in how far
order-theoretical notions might contribute to answering such questions. While splitting



attributes may be necessary for applications, it is of interest to first investigate what is
possible without splitting attributes as discussed in the next two sections.

3 Order dimension

Very “complex” zone sets cannot be represented as rectangular Euler diagrams. But it
is not easy to characterise exactly how this complexity can be measured. One possible
measure is the order dimension of a poset (e.g. Ganter & Wille 1999). First the notions
of order embedding and direct product are required:

Definition 10. For two posets (P,≤p) and (Q,≤q), a map ψ : P → Q is called an
order embedding if ∀(p, q ∈ P ) p ≤p q ⇐⇒ ψ(p) ≤q ψ(q).
The direct product of two posets (P1,≤) and (P2,≤) is a poset (P1 × P2,≤) with
(x1, x2) ≤ (y1, y2)⇐⇒ x1 ≤ y1 and x2 ≤ y2.

According to Ganter & Wille (1999) a finite poset (P,≤p) can be order embedded
into a powerset of a set and can be represented as a zone set using a formal context
according to Def. 3. Thus at least for finite sets, every zone set is a poset and every
poset can be modelled as a zone set. The direct product in Def. 9 then coincides with
what is stated in Def. 10.

Definition 11. A poset (P,≤) has an order dimension dim(P,≤) = n if (P,≤) can be
embedded into a direct product of n linear orders and n is the smallest such number.
A poset (P,≤) has a k-dimension dimk(P,≤) = n if (P,≤) can be embedded into a
direct product of n linear orders of length k and n is the smallest such number.

For example, Fig. 4A shows a direct product of 2 linear orders. Any poset that can be
embedded into 4A has order dimension ≤ 2. The equivalent Euler diagram in Fig. 4B
is constructed by rotating the Hasse diagram 45 degrees to the left and then drawing
rectangles instead of edges. Embedding a poset (as in 4C) into another poset (such as
4A) entails arranging the nodes in similar positions and leaving sufficient edges so that
the ≤-relation still holds between all nodes. As shown in 4D this may require some
shading. Furthermore, contrary to a subdiagram which has the same attributes as its
utmost diagram, embedding may require different attributes. In Fig. 4 the embedded
poset has two attributes that are not in the original poset (g := b ∩ d and h := f ∩ a).
The Euler diagram in 4D is rectangular, not tabular. In this case, it can be represented
as a tabular diagram (4E). The question arises as to which zone sets can be represented
using embedding.

Definition 12. Let E+1x1 denote the set of zone sets that can be represented by embed-
ding into tabular diagrams.

Lemma 6. E+1x1 = E2

Proof. The vertical and horizontal curve segments of rectangular diagrams can be pro-
jected onto a vertical and a horizontal axis, respectively. The projections are linear di-
agrams. Every zone of a rectangular diagram is thus representable as embedded into a
direct product of two linear diagrams. ut



Thus embedding into E1x1 allows to represent as much as E2 whereas creating sub-
diagrams is less powerful because of E1x1 ⊂ E2. But as mentioned above, in applica-
tions embedding is only suitable if it is acceptable to change attributes. An algorithm
for drawing rectangular diagrams might consist of determining two linear diagrams in
which the diagram can be embedded or which it is a subdiagram of.

The next lemma discusses the relevance of order dimension for Euler diagrams. For
example, zone sets in E1 can have an order dimension larger than 1 as demonstrated by
Fig. 2.
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Fig. 4. Direct product of 2 linear orders and example of embedding

Lemma 7. I) dim(P,≤) = 1⇒ zone set in E1⇒ dim(P,≤) ≤ 2.
II) dim(P,≤) = 2⇒ zone set in E2⇒ dim(P,≤) ≤ 4.
III) Not every poset of dim(P,≤) = 2 is in E1.
IV) Not every poset of dim(P,≤) = 2 is in E1x1.
V) Not every poset of dim(P,≤) = 3 is in E2.

Proof. I) If dim = 1 then the poset can be embedded into a linear order and is thus a
linear diagram. If the poset is in E1 then it has a planar Hasse diagram and thus dim ≤ 2.
II) If dim ≤ 2 then the construction mechanism described for Fig. 4 can be used. If the
poset is in E2 then it can be represented by a rectangle containment order (as explained
in the next section) for which it is known that dim ≤ 4. III) For example, even if the
linear orders in Fig. 4A were one element shorter, i.e. a 3×3 grid, then it cannot be
represented as a linear diagram for the same reason as in Fig. 2. The node in the middle
would have to be supplemental. IV) For example, if the linear orders in Fig. 4A were
one element longer, i.e. a 5×5 grid, then it cannot be represented as a tabular diagram
unless the node in the centre is supplemental. V) For example, a 3×3×3 grid cannot be
represented as a rectangular diagram. Again, 26 zones can be represented, but the 27th
node in the centre of the cube would have to be supplemental. ut

The 2-dimension corresponds to the number of atoms of the smallest powerset
which a poset can be embedded into.

Lemma 8. I) dim2(P,≤) ≤ 4 =⇒ zone set in E2.
II) dimk(P,≤) ≤ 2 =⇒ zone set in E2.

Proof. I) according to Lemma 4 powersets of 4 attributes are in E1x1 and dim2 = 4
means an embedding into a powerset of 4 attributes. II) According to Lemma 7II). ut



In summary, the order dimension of a poset provides some hints as to whether it
might be representable as a linear, tabular or rectangular Euler diagram. Posets arising
from applications, however, often have at least order dimension 3 or 4. And in those
cases, it is not clear whether or not the poset can be represented by a rectangular or
tabular diagram but Dürrschnabel & Priss (2024) provide some further criteria.

4 Lattices and Geometric Containment Orders

A finite poset is called a lattice if each set of elements has a supremum and an infimum.
Priss (2020) explains that some zone sets of Euler diagrams only form lattices if sup-
plemental nodes are added (e.g. Fig. 2C and Fig. 5). Supplemental nodes correspond to
intersections of curves whose smallest larger container is a union. For example, {c, d}
in 5B is a gap, but c ∩ d is visible in the linear diagram even though it can only contain
objects that are also in a or b, i.e. c∩d ⊆ a∪b. Furthermore, the empty set cannot be sat-
isfactorily represented in Euler diagrams because it corresponds to every gap and could
simultaneously be inserted everywhere in a diagram. In a Hasse diagram (as in 5A), the
empty set can always be added as a supplemental node at the bottom if it is not already
there. In applications the bottom element is often supplemental and can be omitted be-
cause it represents attributes which exclude each other. The Hasse diagrams in Fig. 5
demonstrate that with supplemental nodes both posets are lattices. Without supplemen-
tal nodes, some elements would not have suprema and infima. In fact, Dürrschnabel &
Priss (2024) show that a zone set together with its supplemental nodes always forms a
lattice. FCA provides algorithms for calculating such lattices.
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Fig. 5. Zone sets with supplemental nodes are always lattices

From the viewpoint of order theory, an important negative result is that geometric
containment orders are not Euler diagrams. On first sight, it might seem as if interval
containment orders are the same as linear diagrams and rectangle containment orders
are the same as tabular diagrams. If that was the case, then obtaining rectangular Euler
diagrams would be mostly trivial because it is a well-known fact that any poset of order
dimension 2 (or less) can be represented by an interval containment order and any poset
of order dimension 4 (or less) can be represented by a rectangle containment order and
data from sets in applications usually have order dimension 4 (or less). But the bounds
presented in Lemma 7 cannot be reduced which is an indication that Euler diagrams are
not geometric containment orders.



Definition 13. A geometric containment order is an inclusion order in an Euclidean
space where x < y if and only if the shape corresponding to x is properly included
in the shape of y. An interval containment order is a geometric containment order of
intervals on the real line. A rectangle containment order is a geometric containment
order of rectangles on a real valued coordinate system with two axes.

In an interval containment order, b < a means that the left endpoint of a is smaller
than the left endpoint of b and the right endpoint of a is larger than the right endpoint
of b. The same principle is applied to the four cornerpoints of a rectangle in a rectangle
containment order. Even though the interval containment order in Fig. 6A is the same
picture as in Fig. 2B (apart from the added label u), the corresponding Hasse diagrams
are different in the case of a linear Euler diagram and an interval containment order.
The difference is that geometric containment orders only consider containment and in-
comparability, but not intersections and unions. Thus a, b and c in Fig. 6A are mutually
incomparable. They are all contained in u and all contain d. But the fact that b is con-
tained in the union of a and c is ignored. In other words, geometric containment orders
only represent an ordering on attributes, but ignore objects. For example in Fig. 6A, it
is not possible for b \ (a ∪ c) to accommodate any objects but that is irrelevant if the
diagram is read as a geometric containment order.

Lemma 9. Euler diagrams and geometric containment orders are not the same.

Proof. As explained in the previous paragraph and because of Lemma 7. ut
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Fig. 6. A) Interval containment order and B) its Hasse diagram

Instead of embeddings into direct products of linear orders a different, more com-
monly used (and equivalent) definition of order dimension involves intersections of lin-
ear orders. In that case, order dimension 2 means that a poset can be represented as an
intersection of two linear orders. For example, the interval containment order of Fig. 6
can be represented as an intersection of d < c < b < a < u and d < a < b < c < u. In
Fig. 7 these two linear orders are utilised to produce different graphical representations.
Each diagram has two axes which are labelled with the attributes in a sequence accord-
ing to the two linear orders. In 7A and 7B the axes form right angles, in 7C a 180 degree
angle. A line then connects the two locations of each attribute resulting in rectangular
curves in 7A1, triangular curves in 7A2 and B and linear curves in 7C. Essentially, Fig-
ure 7A1 follows the same principle as Fig. 4. Figure 7 demonstrates that different curve
shapes produce different numbers of zones. Interestingly, if the curve shape is modified



from rectangle to triangle (as in 7A2 and 7B), the line connecting b can be moved to ei-
ther produce the Hasse diagram in 7A or in 7B whereas using rectangles only the Hasse
diagram in 7A is possible. The figure also shows that posets of order dimension≤ 2 (as
in 7A1) can always be represented as interval containment orders (7C) requiring only
to change the angle between the axes. But 7C contains fewer zones than 7A and cannot
accommodate any objects in zone {b}.
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Fig. 7. Different Euler diagrams corresponding to the same interval containment order

5 Layout Strategies for Rectangular Euler Diagrams

A motivation for this research is to develop software for generating diagrams from
databases using existing FCA algorithms but with Euler diagrams instead of Hasse dia-
grams. The aim is to automatically produce diagrams for very small data sets which are
easy to read for users who have not been trained in FCA. This section does not intend
to provide an overview of the literature on diagram design and layout but to sketch the
design strategies that we have identified for our software. The usability of diagrammatic
representations has been studied by many authors for many purposes but small changes
can impact the results. For example, a study by Blake et al. (2014) derives 9 guidelines
for good Euler diagrams one of which states that circles are preferable to rectangles.
But contrary to their rectangles ours are dislocated and with rounded corners (adher-
ing to their guideline of using smooth curves). Therefore Blake’s negative result about
rectangular diagrams is not applicable to our research.

An advantage of tabular diagrams is that users know how to read tables and only
rows and columns matter. But if one compares the rectangular diagram in Fig. 4D with
the tabular diagram in Fig. 4E, then the rectangular diagram is probably easier to read
because it contains fewer shaded minimal regions. In this case the diagram in 4D is
mostly tabular. Its two non-tabular rectangles (for g and h) do not extend across a large
number of rows and columns and are thus not difficult to visually discern. Furthermore,
the relationships h < a and g < d are clear in 3D and obscured in 3E. In summary,
we have identified the following design strategies for obtaining diagrams with respect
to our software:



S1 produce tabular diagrams if possible
S2 minimise shading
S3 try to visually preserve structures such as containment relationships and symmetries
S4 group shaded areas into large blocks instead of scattering them across the diagram
S5 avoid splitting attributes
S6 use added textual explanations if they simplify a diagram
S7 if the diagram is too large: reduce or split the data set

Unfortunately, some of the strategies are mutually contradicting. Fig. 8 presents six
different Euler diagrams for the Hasse diagram in 8A. The universal set corresponding
to the top node of the Hasse diagram is only drawn in 8D and 8E and omitted in the
other diagrams. The embedding into a product of two linear orders in 8B follows the
constructions in Fig. 4. A subdiagram of a powerset poset with 6 atoms is shown in
8C as a tabular diagram with two split attributes. Omitting rows and columns in 8C
that are fully shaded results in 8F. An embedding into a powerset poset with 4 atoms
is displayed in 8G. Figure 8G adheres to S2 and S5 by reducing shading and avoiding
splitting but contradicts S3 because of scattered shaded minimal regions and difficult
to see rectangles. The linear diagrams in 8D and 8E contradict S5 (split attributes)
and S3 (containment and symmetries) but optimise S2. They contradict S3 in different
ways: in 8D all attributes are structurally equal whereas 8E preserves one containment
relationship. Usability experiments could determine which diagrams are most suitable
for certain tasks. In this case, a tabular diagram without split attributes is not possible.
Amongst the tabular diagrams, Fig. 8D appears to be least cluttered. The meaning of
“a...f” in this diagram can be easily explained to users with an added short textual
statement.
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Fig. 8. Seven different representations of the same zone set

The examples in Fig. 8 are all subdiagrams of or embeddings into standard dia-
grams, such as products of linear orders or powersets which are easy to generate. The
number of shaded minimal regions can be counted and compared. An FCA method



called “conceptual partitioning” supports decisions about which attributes might be
most suitable for splitting (Priss, 2023). The grouping of shaded areas can be optimised
by permuting the sequence of the rows and columns. Last but not least, algorithms need
not be fully automated. Drawing high quality Euler diagrams completely by hand is
very time consuming. For the production of high quality diagrams, a software that pro-
vides a selection of possible layouts for additional manual modification with the support
of a suitable drawing software is already very desirable.

6 Conclusion

This paper was written in the context of developing software for generating Euler di-
agrams with comfortable drawing capabilities so that the diagrams can be manually
edited to some degree, but also automatically generated from binary relations. It builds
on previous work by Priss (2020, 2021 and 2023) and continues with the goal of build-
ing software that visualises mathematical concepts for educational purposes. The cur-
rently existing educaJS software2 only provides Hasse and Venn diagrams and is in-
tended to also produce Euler diagrams.

Even for small data sets, automatically generating “good” diagrams is surprisingly
difficult. A strategy from Section 5 is to mostly generate tabular Euler diagrams because
rectangular shapes are geometrically easy to construct and users know how to read ta-
bles. Section 4 elaborates on order-theoretical properties that are more of mathemati-
cal relevance and may not directly support construction algorithms whereas the order-
theoretical properties presented in Section 3 directly support decisions about whether
or not tabular diagrams without split attributes are possible at all. An important step is
to determine whether an attribute set can be partitioned into two sets so that a tabular
diagram can be produced as a direct product of two linear diagrams. Algorithms for
such tasks are described by Dürrschnabel & Priss (2024). If a diagram without split
attributes does not exist then the data can be reduced or split, for example using “con-
ceptual partitioning” as discussed by (Priss, 2023).
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