
SQL - Subqueries and
Schema

Chapter 3.4
V4.0

Copyright @ Napier University

Subqueries

• Subquery – one SELECT statement inside another
• Used in the WHERE clause
• Subqueries can return many rows.

• Subqueries can only return 1 column i.e. SELECT X

• Used as a replacement for view or selfjoin.
• Some programmers see them as easier to understand

than other options.
• The main drawback is that they can be much slower than

selfjoin or view.

Simple Example

• Who in the database is older than Jim Smith?

1. SELECT dob FROM driver WHERE name = ‘Jim Smith’;

2. SELECT name FROM driver WHERE dob < ’11 Jan
1980’;

Dob

11 Jan 1980

name

Bob Smith

Bob Jones

• Combined together:

SELECT name
FROM driver
WHERE dob < (SELECT dob

FROM driver
WHERE name = ‘Jim Smith’)

;

• This query will only work if there is only 1 Jim Smith.

=, >, >=, <, <= only work if
there is just one record

returned by the subquery

ANY and ALL

• To support subqueries which return more than 1 row we
need some additional operators… ANY and ALL.

• ANY – changes the rule so that it must be true for at least
one row of the rows returned from the subquery.

• ALL – changes the rule so that it must be true for each
and every row returned from the subquery.

• The ANY or ALL operator goes immediately before the
open bracket of the subquery.

Example 1

• What cars are the same colour as a car owned by Jim
Smith?

• Jim owns 2 cars, one is RED and the other BLUE. We
are looking for cars which are either RED or BLUE.

SELECT regno FROM car
WHERE colour = ANY (

SELECT colour
 FROM car

WHERE owner = ‘Jim Smith’
)

Example 2

• List the drivers that are younger than all the people who
own a blue car.

• We are looking for the age of drivers who own a BLUE
car, and listing drivers who are younger than all of those
ages.

SELECT name, dob FROM driver
WHERE dob > ALL (

SELECT dob
FROM car JOIN driver ON

(owner=name)
WHERE colour = ‘BLUE’
) ;

IN and NOT IN

• We earlier saw IN working for sets like (‘A’,’B’).
• A subquery itself returns its result as a set.
• Therefore we can use IN and NOT IN on subqueries.

• Question: Which cars are the same colour as one of Jim
Smith’s cars? [Subquery returns (‘RED’, ‘BLUE’)]

SELECT regno FROM car
WHERE colour IN (SELECT colour FROM car

 WHERE owner = ‘Jim Smith’)
;

Example of NOT IN

• Question: Which cars DO NOT have the
same colour as one of Jim Smith’s cars?

SELECT regno FROM car
WHERE colour NOT IN (SELECT colour

FROM car
 WHERE owner = ‘Jim

Smith’)
;

EXISTS

• If a question involves discovering uniqueness, then it can
probably be easily solved using the operator EXISTS or
NOT EXISTS.

• The EXISTS operator tests the result of running a
subquery, and if any rows are returned it is TRUE, else
it is FALSE.

• NOT EXISTS does the opposite of EXISTS.

• Note that subqueries can actually refer to
tables defined outside the brackets which
contain the subquery. This is exceptionally useful, but
can be slow to execute and confusing to look at.

• Question: List the colours which are used more than
once in the database.

SELECT DISTINCT a.colour
FROM car a, car b -- unique name for each
table
WHERE a.colour = b.colour -- Same colour
AND a.regno != b.regno -- Different cars

colour

BLUE

• Question: List the colours which are only used once in
the database.

SELECT a.colour
FROM car a
WHERE NOT EXISTS (

SELECT b.colour
FROM car b -- unique name for table
WHERE a.colour = b.colour -- Same colour as table a
AND a.regno != b.regno -- Different car from table a

);

UNION
• Sometimes you might write two or more queries

which produce the same types of answer, and you
want to combine the rows of these answers into a
single result.

• UNION does this, and basically allows you to
combine different SELECT statements together.

• UNION automatically removes duplicate rows.
• UNION-ed columns must match and be of the

same type

• For the next example, assume a new row has
been added to the DRIVER table for David Davis,
but that he owns no cars.

• Question: List all drivers in the DRIVER table,
together with how many cars they own.

SELECT name, count(*)

FROM driver JOIN car on (name = owner) GROUP BY
name

David Davis is missing, as he did not satisfy the JOIN
condition.

NAME Count(*)

Jim Smith 2

Bob Smith 1

Bob Jones 1

• Write a query just for David Davis…

SELECT name, 0

FROM driver

WHERE name NOT IN (select owner from car)

NAME

David Davis 0

ZERO

• Link (UNION) the two queries together:

SELECT name, count(*)
FROM driver JOIN car on (name = owner)

UNION
SELECT name, 0
FROM driver
WHERE name
 NOT IN (select owner
 from car)

NAME Count(*)

Jim Smith 2

Bob Smith 1

Bob Jones 1

David Davis 0

Changing Data

• We have looked so far at just SELECT
• There are some other useful operators

(DML) too:
– INSERT
– DELETE
– UPDATE

INSERT
INSERT INTO table_name

[(column_list)] VALUES (value_list)

The column_list can be omitted if every column is to
be assigned a value, otherwise it must list the
columns to be assigned values.
The value_list is a set of values for each column in
the same order as the column_list, if specified, or as
the columns are defined in the original CREATE
TABLE.
 insert into driver

values (‘Jessie James’,’31 Nov 1892’);
 insert into driver (name,dob)

values (‘John Johnstone’,’1 Aug 1996’);

DELETE

DELETE FROM table_name [WHERE condition];

the rows of table_name which satisfy the condition are deleted.

• Delete Examples:

DELETE FROM car; -- Deletes all rows from CAR

DELETE FROM car
WHERE owner is null; -- Delete rows for cars without owners

UPDATE

UPDATE table_name
SET column_name = expression,
{column_name=expression}
[WHERE condition]

Set all BLUE cars to GREEN:
UPDATE car SET colour = ‘GREEN’
WHERE colour = ‘BLUE’

Add VAT/Purchase Tax at 17.5% to all prices
UPDATE car SET price = price * 1.175

View Manipulation

When is a view ‘materialised’ or populated with rows of
data?

• When it is defined or
• when it is accessed

If it is the former then subsequent inserts, deletes and
updates would not be visible. If the latter then changes will
be seen.

Some systems allow you to choose when views are
materialised, most do not and views are materialised
whenever they are accessed thus all changes can be seen.

VIEW update, insert and
delete

Can we change data in views?
• Yes, provided the primary

keys of all the base tables
which make up the view
are present in the view.

VIEW cont...

• This view cannot be
changed because we
have no means of
knowing which row of
B to modify

Controlling the Schema

• All the commands so far have allowed data to be looked
at, changed, added to, or removed.

• We also need commands to build, change, and remove
table definitions.

• We call these schema changes.

• The useful commands (DDL) to do this include:

– CREATE TABLE
– DROP TABLE
– ALTER TABLE

CREATE TABLE

• Column types are needed to tell the DBMS what is
allowed to be stored in each attribute column.

• A selection of types include:
– INTEGER
– REAL
– DECIMAL -- Including DECIMAL(5) and

DECIMAL(4,2)
– VARCHAR – variable character length
– CHAR -- Pads out strings with spaces
– DATE
– BLOB –maps, picture, videos etc

SYNTAX

CREATE TABLE tablename (
 colname type optionalinfo
,colname type optionalinfo
,other optional info

);

• Optionalinfo could be things like
– Col_B INTEGER REFERENCES TableB (Col_C)
– Col_A INTEGER PRIMARY KEY
– Col_A INTEGER NOT NULL

• The other optional info at the end of the definition (i.e. “other
optional Info”) tend to be rules which impact on more than
one attribute:
– PRIMARY KEY (col1, col2,…)

– FOREIGN KEY (col1, col2,…)

 REFERENCES sometable (col3)

CAR + DRIVER

CREATE table driver (
 name varchar(30) PRIMARY KEY
,dob date NOT NULL

);
CREATE TABLE car (

 regno varchar(8) PRIMARY KEY
,make varchar(20)
,colour varchar(30)
,price decimal(8,2)
,owner varchar(30) references driver (name)

);

Entity
Integrity

Referential
Integrity

Foreign
key

DRIVER
Using Additional Info

CREATE table driver

(name varchar(30),

 dob date NOT NULL,

PRIMARY KEY (name)

);

CAR
Using Additional Info

CREATE TABLE car (

 regno varchar(8)

,make varchar(20)

,colour varchar(30)

,price decimal(8,2)

,owner varchar(30)

,FOREIGN KEY (owner)REFERENCES driver (name)

,PRIMARY KEY (regno)

);

DROP TABLE

• If you want to delete a table you use DROP TABLE.
– DROP TABLE tablename

• The main difficulty with dropping a table is referential
integrity. As CAR refers to DRIVER (owner references
name), you must delete CAR first then DRIVER. If you
try to delete DRIVER first, the system would report an
error.

DROP TABLE car;

DROP TABLE driver;

ALTER TABLE (DDL)

• To change a table which already exists you could use
ALTER TABLE.

• It is a complex command with many different options
[MODIFY, ADD, DROP, RENAME].

• A simple example of it would be adding an address field
to the DRIVER table.

ALTER TABLE driver ADD address varchar(50);

SELECT - Order of Evaluation

SELECT [DISTINCT] column_name 5,6* eliminate
unwanted data

FROM label_list 1 Cartesian Product
[WHERE condition] 2 eliminate unwanted rows
[GROUP BY column_list 3 group rows
[HAVING condition]] 4 eliminate unwanted

groups
[ORDER BY column_list[DESC]] 7 sort rows

The last four components are optional.

* 5 eliminate duplicates 6 specifies columns

