
SQL – Logical Operators and
aggregation

Chapter 3.2

V3.01
Copyright @ Napier University

Logical Operators

• Combining rules in a single WHERE clause would be
useful

• AND and OR allow us to do this

• NOT also allows us to modify rule behaviour

• When these are combined together, problems in rule
ordering can occur.

• This is solved using parentheses.

AND
• AND combines rules together so that they ALL

must be true.
• Lets revisit the CAR table:

REGNO MAKE COLOUR PRICE OWNER

F611 AAA FORD RED 12000 Jim Smith

J111 BBB SKODA BLUE 11000 Jim Smith

A155 BDE MERCEDES BLUE 22000 Bob Smith

K555 GHT FIAT GREEN 6000 Bob Jones

SC04 BFE SMART BLUE 13000

Target

SELECT regno from car SELECT regno from
car

where colour = ‘BLUE’ WHERE regno LIKE
‘%5%’REGNO

J111 BBB

A155 BDE

SC04 BFE

REGNO

A155 BDE

K555 GHT

SELECT regno from car
WHERE colour = ‘BLUE’ AND regno LIKE ‘%5%’
;

REGNO

A155 BDE

Multiple AND rules

• You can have as many rules as you like ANDed together.
• For example:

SELECT regno

FROM car

WHERE colour = ‘BLUE’

AND regno like ‘%5%’

AND owner like ‘Bob %’

;

OR
• OR is like ‘either’. So long as one of the rules is true then

the filter is true.
• Looks for cars which are EITHER red or blue…

SELECT regno, colour from CAR
WHERE colour = ‘RED’ OR colour = ‘BLUE’

REGNO COLOUR

F611 AAA RED

J111 BBB BLUE

A155 BDE BLUE

SC04 BFE BLUE

In English:
“all cars
that are red
and all cars
that are
blue”

NOT

• NOT inverts the rule it is put in front of:
– WHERE colour = ‘RED’

• Could be inverted as:
– WHERE colour != ‘RED’
– WHERE NOT colour = ‘RED’

• NOT is not really useful in this example,
but comes into its own in more complex
rule sets.

Precedence

• Precedence is the order in which the rules are evaluated
and combined together.

• It is NOT in the order that rules are written.

• Rules are combined together firstly at
• (1) NOT, then
• (2) AND, and finally at
• (3) OR.

Precedence

• (1) NOT (2) AND (3) OR.

• Consider : Car has a 5 in regno and is either red or
blue.

SELECT regno, colour from car
WHERE colour = ‘RED’ -- Line 1
OR colour = ‘BLUE’ -- Line 2
AND regno LIKE ‘%5%’ -- Line 3

REGNO COLOR

F611 AAA RED

A155 BDE BLUE

Solution: Brackets around ORs

• Rewrite as:
SELECT regno, colour from car
WHERE (colour = ‘RED’
OR colour = ‘BLUE’)
AND regno LIKE ‘%5%’

• Might be clearer formatted as:
SELECT regno, colour from car
WHERE (colour = ‘RED’ OR colour = ‘BLUE’)
AND regno LIKE ‘%5%’

REGNO COLOR

A155 BDE BLUE

DISTINCT
• Find all the colours used in cars.

SELECT colour from car;

COLOUR

RED

BLUE

BLUE

GREEN

BLUE

DISTINCT

SELECT DISTINCT colour from car;

COLOUR

RED

BLUE

GREEN

ORDER BY
• It would be nice to be able to order the output using a

sort.

• SELECT make from car;

MAKE

FORD

SKODA

MERCEDES

FIAT

SMART

ASCending order
• Sort by alphabetical or numeric order: ASC
• ORDER BY … ASC is the default.

SELECT make
FROM car
ORDER BY make;

MAKE

FIAT

FORD

MERCEDES

SKODA

SMART

DESCending order
• Sort by reverse alphabetical or numeric order:

DESC
• ORDER BY … DESC must be selected.

SELECT make from car
ORDER BY make DESC;

MAKE

SMART

SKODA

MERCEDES

FORD

FIAT

Multi-Column Sort
• ORDER BY can take multiple columns.

SELECT make, colour FROM car
ORDER BY colour, make;

MAKE COLOUR

MERCEDES BLUE

SKODA BLUE

SMART BLUE

FIAT GREEN

FORD RED

IN

• When you have a list of OR conditions, all on the same
attribute, then IN could be a simpler method:

SELECT regno,make FROM car

WHERE make = ‘SKODA’ or make = ‘SMART’

• Becomes

SELECT regno, make FROM car

WHERE make IN (‘SKODA’,’SMART’);

[OR SUBSELECT]

Aggregate Functions

• Aggregate functions allow you to write queries to
produce statistics on the data in the database.

• These functions are sometimes also called SET
functions.

• These include:
– AVG (calculate the average)
– SUM
– MAX
– MIN
– COUNT

AVERAGE
SELECT price FROM car;

SELECT AVG(price) FROM car;

PRICE

12000

11000

22000

6000

13000

AVG(PRICE)

12800

SUM
• Add up all the values in a column

SELECT SUM (price) FROM car;

SUM(PRICE)

64000

MAX
• What is the maximum value in a column

SELECT MAX(price) FROM car;

MAX(PRICE)

22000

MIN
• What is the minimum value in a column

SELECT MIN(price) FROM car;

MIN(PRICE)

6000

COUNT
• How many rows make up a column

SELECT count(owner) FROM car;COUNT(owner)

4

• Count(*) is similar, but also counts when owner is
NULL.

SELECT count(*) FROM car;
COUNT(*)

5

Only four owners

But five rows

COUNT DISTINCT
• Sometimes you do not want to count how

many rows are in a column, but how many
distinct values could be found in that column.

• There is a special variant of count which
does this:

SELECT count(colour) from car;

SELECT count(DISTINCT colour) from car;

 BLUE is counted once only

COUNT(colour)

5

COUNT(colour)

3

GROUP BY
• Aggregation functions so far have been shown in

queries with only the aggregation function on the
SELECT line.

• You can combine functions and non-functions on the
select line.

• To do this you need GROUP BY.

• Question: What is the most expensive car for each
colour.

• Intuitively the following seems right, but will not
execute!

SELECT colour, max(price)

FROM car;

SELECT colour,price
FROM car;

SELECT colour, max(price)
FROM car
GROUP BY colour;

COLOUR PRICE

RED 12000

BLUE 11000

BLUE 22000

GREEN 6000

BLUE 13000

COLOUR PRICE

RED 12000

BLUE 22000

GREEN 6000

HAVING

• WHERE allows rules for each row.
• HAVING allows rules for each group of a GROUP BY.

• Consider the problem “Who has more than 1 car”.

• We would like to say:
SELECT owner from car where count(owner) > 1

• Aggregate functions are not allowed in WHERE.
• They are allowed in HAVING.

SELECT owner, count(regno)
FROM car
GROUP BY owner
HAVING count(regno) > 1

OR
SELECT owner -- function omitted
FROM car
GROUP BY owner
HAVING count(regno) > 1

HAVING count(*) works just as well in this case.

OWNER
Count
(REGNO)

Jim Smith 2

OWNER

Jim Smith

