Introduction	Challenges	Ontology 101
0	0	0000000

Basics of ontology modelling

Knowledge Architecture

School of Computing Napier University, Edinburgh, UK Uta Priss

Semester 1, 2005

Outline

Introduction

Challenges

Ontology 101

A dilemma for knowledge representation:

- unlimited opportunity (powerful hardware, software, Moore's law, graphics)
- but often: faulty systems, imperfect usability, confusing information architecture, high learning curve
- reasons: too short software life-cycle? interdisciplinarity? interoperability? lack of theoretical understanding?

What are the theoretical foundations of knowledge representation?

Introduction	Challenges	Ontology 101
0	•	0000000

TBA

Why develop ontologies?

- Share common understanding of information among people or agents
- Reuse of domain knowledge
- Make domain assumptions explicit
- ► Separate domain knowledge from operational knowledge
- Analyse domain knowledge

(Note: the remaining part of this lecture is based on the Noy & McGuiness (2001) paper.)

What is an ontology

- classes (or concepts)
- relations (a subset of classes)
- ► slots (features, attributes, roles or properties)
- ► values with restrictions (facets), cardinality, type, scope
- instances (individuals, objects or entities)

 \rightarrow similar to object-oriented modelling, relational databases, library thesauri.

Examples: An ontology for dogs

- ► classes: dog, poodle, terrier, ...
- ► slots: fur colour, size, ...
- ▶ value restrictions: size is between 30 cm and 1 m, ...
- ► instances: Greyfriar's Bobby

Some rules for creating ontologies:

- ► There is no one single correct way for building an ontology.
- Ontology development is iterative.
- Concepts of the ontology should be close to objects and relationships in the domain of interest.

 \rightarrow rules are similar to those for entity relationship modelling in relational databases and for (library) thesaurus construction.

Class hierarchy

- ► Poodle is a subclass of Dog.
- Toy-Poodle is a subclass of Poodle.

All poodles are dogs.

The class Poodle has the same slots as Dog, but it can have additional ones.

Slots

Slots can be

- ▶ intrinsic properties (such as fur colour for dogs).
- extrinsic properties (such as region of origin).
- ▶ parts
- ► relations with other individuals (such as dog/breeder).

Constructing a class hierarchy:

- should be transitive
- avoid cycles
- create a list of synonyms for each class
- preserve level of granularity
- ▶ use neither too few, nor too many subclasses for each class
- multiple inheritance is ok
- ► there is no clear rule for deciding whether something is a class, a property value or an instance
- rules for naming (capitalisation, singular/plural, prefix/suffix) should be established