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Abstract

This paper introduces a method for classifying the meronymy relation
based on quantificational tags. It is an example for an application of Rela-
tional Concept Analysis, which is an extension of Formal Concept Analysis,
in the field of computational linguistics. Therefore this paper does not report
the complete results of an investigation, but it tries to give ideas for further
research using these methods.

1 Introduction

Different authors have tried to classify the meronymy relation. Winston et al.
(1987) distinguish six kinds of the meronymy relation which are separated by
so-called ‘relation elements’. Chaffin & Herrmann (1988) distinguish eight dif-
ferent kinds by using relation elements, but neither their kinds nor their relation
elements coincide with the classification of Winston et al. A classification by Iris
et al. (1988) which is based on four elementary models also only partly coincides
with the other classifications. Cruse (1986) uses a different approach, he identifies
four kinds of the meronymy relation based on quantificational differences. This
approach is further developed by Woods (1991) who suggests that a semantic re-
lation consists of a quantificational tag and a relational component. In this paper
Woods’ idea is embedded into the formal analysis of conceptual hierarchies. A
theory for conceptual data structuring, called Formal Concept Analysis, has been
developed for more than sixteen years at the Technische Hochschule Darmstadt
(Ganter & Wille, 1996). It defines a concept based on its extent, which denotes the
set of the formal objects of the concept, and on its intent, which denotes the set of
the formal attributes of the concept. Concepts can either be represented in formal
contexts which are cross-tables of the relation between objects and attributes or
in the form of mathematical lattice diagrams. While Woods defines a relation r
among ‘instances’ which leads to a relation R among ‘classes’, in the framework



of Formal Concept Analysis, the relation r is defined among formal objects and
inherited by concepts as relation R. This leads to Relational Concept Analysis,
which is therefore the extension of Formal Concept Analysis to a more general
theory that includes additional relations.

Formal and Relational Concept Analysis have already been used for applications
in various subject areas. They are applicable to linguistics in several ways. First,
they can facilitate the formalization of linguistic items by restricting lexical data to
fixed contexts and specifying the role of each item in the context. While construct-
ing formal contexts, the linguist has to determine if the formal objects are denotata
of word forms, word forms or disambiguated word forms (Priss, in prep.2). The
formal attributes can be attributes of denotata or connotational attributes. Depend-
ing on the selection of objects and attributes, the resulting formal concepts can
represent denotative concepts, meta-concepts, word concepts or others.

Second, Woods’ idea of inheritance of semantic relations (for example, from sub-
concepts to superconcepts) can be formalized, further investigated, and formally
proved in the framework of Relational Concept Analysis (Priss, in prep.1). This
can be applied to any semantic network that has hierarchical relations. Third, ir-
regularities in the implementation of the semantic relations of a lexical database
can be found and corrected. This is shown for the lexical database, WordNet, by
Priss (in prep.3). Fourth, in this paper formal properties of semantic relations are
used to obtain classificational attributes. This is demonstrated using the quantifi-
cational tags of the meronymy relation.

2 Formal Concept Analysis

Formal Concept Analysis, as a theory of data structuring, starts with the notion of
a formal context that is defined as a triple (G, M, I) where G is the set of formal
objects (Gegenstdnde), M is the set of formal attributes (Merkmale), and I is a
binary relation between G and M for which g/m is interpreted as ‘the object g has
the attribute m’ (Ganter & Wille, 1996). The prime-operator yields all common
attributes of a set of objects X C G, X' :=={m € M | gImforall g € X} orall
common objects of a set of attributes Y C M, Y’ := {g € G | gImforallm €
Y}, Apair (X, Y) is said to be a formal concept of the context (G, M, I) if X C
G,)YCMX=Y,andY = X' If (X,Y) is a concept, then X is called the
extent, Y is called the intent of the concept. A main characteristic of a concept is



the fact that the extensional and the intensional definition are equivalent. In Figure
1 the classification of meronymy by Chaffin & Herrmann is used as an example.
The “relation families’ are interpreted as the formal objects, the relation elements
as the formal attributes of the formal context.
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Figure 1: Formal context and line diagram of its concept lattice

The set of all concepts of (G, M, I) is denoted by B(G, M, I). The most important
structure on B(G, M, I) is given by the subconcept-superconcept relation that is
defined as follows: the concept (X7, Y;) is a subconcept of the concept (X5, Y3)
if X; C Xy, which is equivalent to Y5 C Y;; (X5, Y5) is then a superconcept of
(X1, Y1). This definition yields an order relation ‘<’ on B(G, M, I') with which
the set of all concepts forms a lattice B(G, M, I). Lattices are effectively visu-
alized by line diagrams. Each object g labels the concept g in the line diagram
that is the smallest concept the object belongs to. Dually, an attribute m labels
wm the largest concept it belongs to. The advantage of the lattice representation
is that the similarity of the ‘relation families’ does not have to be calculated using
statistical methods as in Chaffin & Herrmann’s paper. But the similarities of the



relation families to each other can be examined by investigating the lattice dia-
gram. It becomes, for example, obvious that “functional object” and ‘functional
location’ are not properly discriminated. Maybe ‘functional location’ should also
have the relation element “locative’. It can be observed that ‘group’ is a subconcept
of “collection’, because a “‘group’ has all the relation elements of a ‘collection’ but
furthermore it has the relation element *social’. These examples show that the lat-
tice representation can serve as the basis for a scientific discussion on subjects
whose structure would not be transparent otherwise.

3 Relational Concept Analysis

Relational Concept Analysis considers additional relations among objects or at-
tributes besides the conceptual hierarchy. It can be interpreted as an extension
of Woods’ quantificational tags, relational components, and inheritances. In what
follows, only binary relations » C G' x G are considered. These relations are trans-
ferred to relations among concepts, i.e., R C B(G, M, I)xB(G, M, I), according
to the following definitions. The quantifiers that are used in the definitions can be
natural language or mathematical expressions, such as ||all||, ||at least 1|| =: || >
1|, or ||exactly 1|| =: ||1|| (for more details on natural language quantifiers see
Westerstahl (1989)). For the context (G, M, I), the relation » C G x G, the extents
B, B, of the concepts B;, B,, and the quantifiers Q?, 1 < i < 4, are defined

B R'[Q', Q%] By i< Q;1€§1Q32€§2 L g1T g (1)
B, RT[QQ?’,Qﬂ By <= nge&@;legl 1T 92 (2)
B R'[Q", Q% Q% QY] By <= ©)
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Each relation r leads therefore to several different relations R among concepts.
Relations among concepts based on a relation » C M x M among attributes
are defined similarly. In linguistic applications they can be used, for example, to
describe antonymy, but this definition will not be considered in this paper. The
formalization can be best understood through an example: ‘all door-handles are
parts of doors’ states a meronymy relation between door-handles and doors. More
precisely it means that all objects that belong to the concept “door-handle’ have an
object in the concept ‘door’ so that the meronymy relation holds between them.
The variables in equivalence (1) are therefore Q' := |[all||, Q*> = || > 1]|, B,
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is the concept ‘door-handle’, B, is the concept ‘door’, and r is the relation ‘is
part of”. Equivalence (2) could be “there is at least one door which has a handle’,
because ‘all doors have to have handles’ is probably not true.

The case where Q' = Q% = || > 1|| and therefore also Q* = Q* = || > 1|
Is abbreviated as Rj. It is the minimal relation where at least one pair of objects
is in relation r to each other, because if Q' or Q% equals || > 0||, then it is not
known whether there is a single pair of objects with relation r at all. In most appli-
cations Q! and @2 equal ||all||, therefore “ R"[||all||, @%; ||all||, Q] is abbreviated
as RfQ4;Q2). Furthermore, the vertical lines ‘||’ can be left out for Q* and Q? in
the subscript of R?Q4;Q2)' Thus BlR(Q4;Q2)BQ is read as: for all elements g, in the
extent of B, exist Q% elements g, in the extent of B, with g,7g, and for all ele-
ments g in the extent of B, exist Q* elements g, in the extent of B, with gsrgs.
With Woods’ terminology, the subscript (Q*; Q?) of R becomes the quantifica-
tional tag, the superscript r the relational component. Besides its applications to
the modeling of lexical databases, this formalization can be used to describe func-

tions R{,y), bijections R, ,,, or Cartesian products Rzall;all)'

For linguistic applications the ||some, ||- and the ||several||-quantifiers are useful.
||some, || is used for mass nouns, such as ‘a sausage contains some meat’. The
index ‘1’ refers to the singular meaning of ‘some’ (there is some meat) in contrast
to the plural meaning (there are some people). (It should be noted that all these ex-
amples have to be understood in a prototypical sense: ‘a prototypical sausage con-
tains meat’, and so on.) || < some; || means there are none or some, but never all
(“a pizza contains some meat or no meat at all’); ||some; || means there are exactly
some, and not none or all (‘a sausage contains some meat’); || > some;|| means
there are some or all (this quantifier is not used for meronymy). ||several|| denotes
the analogous quantifiers for a collection of objects, such as ‘a book contains sev-
eral chapters’. The objects of a ||several||-quantifier are always interchangeable
(Chaffin & Herrmann call this “homogeneous’).

4 Quantificational tags for meronymy

The basic formal context for the investigation of semantic relations is a denotative
context (Priss, in prep.3), which has denotata of words as formal objects and at-
tributes of those denotata as formal attributes. The concepts can be denominated
by disambiguated words in which case they are called denotative word concepts.



Two words w, and wy are in meronymy relation wqm" ws, if their word concepts B;
and B, are in relation M" to each other (B;M" B,). The four kinds of meronymy
relations described by Cruse, can be formalized as follows. M is the facultative-
facultative kind. (A child can be a member of a tennis-club, but not all children
are members of tennis-clubs, nor do all tennis-clubs have children as members.)
M(5 .5y Is the canonical-facultative kind. (All door-handles are part of a door, but
not all doors have to have handles.) M(.,, ) is the facultative-canonical kind. (All
apartments have doors, but not all doors belong to apartments.) And, M5 IS
the canonical-canonical kind. (Each bird feather is part of a bird, and each bird
has feathers.)

The question of transitivity of meronymy, which has been widely discussed (Win-
ston et al.), can be investigated with Relational Concept Analysis: it can not be
answered in general, but it can be proved that, if = is transitive, then M{50,51
M{150), and M55y are also transitive (Priss, in prep.1). It follows that the in-
transitivity of many meronymy relations is caused by the relational component r
and not by the quantificational tag.

In the rest of this paper only the quantificational tags shall be investigated. Cruse’s
four kinds lead to the tags 0, (> 0;> 1), (> 1;> 0) and (> 1;> 1). Table 1
contains the attempt to classify the meronymy relation by using quantificational
tags. The examples are not complete. Missing combinations do not suggest that
those examples do not exist, but that the author has not found them yet.



(someq; somey)
(< someq; <someq)
(< somey; someq)

relational component tag example

stuff/object (someq; <1) meat/sausage
(someq; 1) sausage meat/sausage
(< someq; <1) meat/pizza

stuff/mass (someq; <someq) salt/seawater

sea salt/seawater
sage/tea
sausage meat/food

element/mass

element/mass; portion/mass

(several; <some;)
(several; some;)
(< several; some;)

body cells/skin
body cells/body tissue
skin cells/body tissue; slice/bread

member/set

(several; <1)
(several; >0)

tree/forest
human/citizenship

member/set; section/object (several; 1) human/sex; chapter/book
unit/measure; memb./set; obj./obj. | (n; 1) sec./hour; card/deck; finger/hand
object/object (>0; 1) refrigerator/kitchen

1; >0) melody/song
obj./obj; individual/individual (1; 1) punch line/joke; Princeton/NJ

Table 1: A classification of meronymy

The first rows of the table show that the quantificational tags depend on the level
of abstraction of the objects (compare, for example, meat/sausage and sausage
meat/sausage). Furthermore, although meronymy relations with different rela-
tional components can share the same tags, each class of relational components
tends to prefer a special tag. Therefore the tags can be a basis of a classifica-
tion. The resulting classes differ from the four meronymy models of Iris et al.,
which distinguish membership, segmented whole, subset, and functional compo-
nents. Here membership and segmented whole are in some cases closer together
(compare human/citizenship and chapter/book). For the object/object relations,
which correspond to the functional components, this classification seems to be
the most unsatisfactory. For example, Chaffin & Herrmann’s component/integral
object, topological part/object, time/time, and place/area are all subsumed under
object/object. Hopefully there will be a combination of research on tags and rela-
tional components in the future.
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