
October 13, 2017 International Journal of General Systems ijgs17

The Version of Record of this manuscript has been published and is available in the International Journal of General Systems
Vol. 46, No. 5, July 2017. p. 569-585 (http://www.tandfonline.com, http://dx.doi.org/10.1080/03081079.2017.1349655)

Semiotic-Conceptual Analysis: A Proposal

Uta Priss∗

Zentrum für erfolgreiches Lehren und Lernen, Ostfalia University of Applied
Sciences,Wolfenbüttel, Germany
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This paper provides the basic definitions of Semiotic-Conceptual Analysis (SCA), which is a
mathematical modelling of signs as elements of a triadic relation. FCA concept lattices are con-
structed for each of the three sign components. It is demonstrated how core linguistic and semiotic
notions (such as synonymy and icon) can be represented with SCA. While the usefulness of SCA
has already been demonstrated in a number of applications and several propositions are proven
in this paper, there are still many open questions as to what to do next with SCA. Therefore this
paper is meant as a proposal and encouragement for further development.
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1. Introduction

From a semiotic viewpoint, signs are the core units of information and communication.
The American philosopher C.S. Peirce and the Swiss linguist F. de Saussure both indepen-
dently developed theories of semiotics. Contrary to Saussure who proposed a binary view
of signs (consisting of sign vehicle and meaning), Peirce saw signs as triadic (the third as-
pect being interpretation). Some previous attempts at mathematically formalising Peirce’s
theory exist (e.g. Marty 1992; Zalamea 2010). The goal of such attempts is usually to stay
close to Peirce’s original theory, which is challenging since Peirce developed his theory
over many years but never formalised it himself. Furthermore, many advances of modern
mathematics were not yet available in Peirce’s time. Even the understanding of core math-
ematical concepts such as “function” was different then. In our opinion, Peirce’s original
idea of modelling signs with triadic relations is intriguing. But instead of a philosophical
investigation into the details of Peirce’s writings, our goal for this paper is to focus on
his core idea (i.e. triadic signs) and to examine how this can be modelled from a modern
perspective. Thus Semiotic-Conceptual Analysis (SCA) starts with a very simple mathe-
matical definition of signs as elements of a triadic relation with the condition that two of
the components uniquely determine the third one and investigates a theory based on that
definition. We are translating existing semiotic and linguistic terminology into SCA, but
we are more interested in developing a mathematically coherent theory than in modelling
exactly what Peirce or others discussed in the past. Thus this paper should be read as an
applied mathematics paper, not as a philosophical paper1.

∗Corresponding author. Email: cf. www.upriss.org.uk
1Priss (2015) discusses how SCA relates to the semiotics of C. S. Peirce in more detail.
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SCA extends and uses Formal Concept Analysis2 (FCA). Concept lattices are employed
as a means of modelling hierarchies of and implications among signs and their components.
Mathematically interesting questions for SCA are whether and how structures among sets
of signs relate to lattice theoretical structures. In the same manner as FCA defines “con-
cept”, SCA notions of “sign”, “denotation”, “interpretation” and so on should be under-
stood as mathematically defined structures whose meanings can be different from how
they are used in other disciplines. The abstract definition of signs in SCA does not re-
quire them to be “sign-like” in the sense of other theories. Thus the question should not
be whether “SCA signs” are signs (in the sense of other theories), but whether SCA can
successfully model semiotic structures in applications. The semiotic motivation for SCA
is elaborated in more detail in the next section. We have used SCA in a few applications
(Priss 2015, 2016) which appear promising. But we feel that further studies are needed
in order to establish more precisely what SCA can or cannot do for applications. Further-
more, we are hopeful that the mathematical theory will, over time, progress beyond what
is presented in this paper. Therefore, this paper should be seen as a proposal and starting
point for future SCA research. Core definitions of SCA were already provided by Priss
(2015), but they are more elaborated and somewhat enhanced in this paper. For example,
Priss (2015) directly incorporated the sign components into the definition of concept lat-
tices. We have now changed this to mappings from sign components into lattices instead
of a fixed construction in order to provide more modelling flexibility for applications.

Contrary to our previous publications on SCA (Priss 2015, 2016) which focused on
applications in the domain of formal languages and educational analysis, this paper does
not focus on applications but develops the mathematical theory further and in more detail
than the previous papers. Several definitions, propositions 2 and 3 and the description of
the modelling with concept lattices in Section 4 are novel in this paper. Section 2 provides
more details about the semiotic background of SCA. Section 3 presents the core definitions.
Section 4 elaborates how the semiotic structures among the signs and their sets lead to
structures among concept lattices. Section 5 discusses types of tasks that can be performed
with SCA. The paper ends with a concluding section.

2. A semiotic motivation for SCA

From a semiotic viewpoint, SCA investigates the relationship between representations and
their meanings in a mathematical framework. A sign is an item occurring in any means
of communication, voluntary or involuntary, used by humans or non-human agents, in
any medium. Signs can be words, pictures, pieces of written or spoken text, webpages,
parts of computer programs, gestures, hormonal signals, traffic signs, brain scans that are
showing neural activity and so on. A sign consists of a representamen, a denotation and an
interpretation. A representamen is a sign vehicle or the physical manifestation of a sign.
A denotation is its presumed meaning. An interpretation is a (partial) function that maps
representamens into denotations.

Many interpretation functions might exist simultaneously. For example, when two peo-
ple communicate they will each be forming their own interpretations in their minds. Ob-
viously, interpretations in the minds of people cannot be directly analysed. Thus further
interpretations are required in order to produce data that can be analysed. Such processes
of compiling data can themselves be analysed using further interpretations resulting in a
chain of related interpretations. For the purposes of mathematical modelling with SCA,

2Because this paper is published in a special issue on FCA, it does not provide an introduction to FCA. Information about
FCA can be found, for example, on-line (www.upriss.org.uk/fca/) and in the main FCA textbook by Ganter and Wille (1999).
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the sets of signs, representamens, denotations and interpretations and their relationships
are considered to be fixed and available as data. How such data is collected and what other
signs (or interpretations) might have been used in the data collection process is not a focus
of SCA.

At first sight, semiotics might seem similar to formal semantics (which maps representa-
mens into denotations), but the difference is that while semantics tries to provide a model
for possible meanings, semiotics attempts to analyse how structures among representa-
mens relate to structures among denotations with respect to structures among interpreta-
tions. Thus semiotics is broader than semantics. Furthermore, the types of applications for
semantics and semiotics can be different.

Two signs are equal if all of their components are equal. But this definition of equality
can be too strong because if the same representamen/denotation pair is used in another
context (i.e. with another interpretation) it is a different sign. Therefore instead of equality,
it is often more useful to consider equivalence and similarity of signs. Similarity can be
modelled via tolerance relations, which are reflexive and symmetric relations. An equiv-
alence relation is a tolerance relation that is also transitive. A tolerance relation can be
derived from any similarity measure by defining a threshold. Items which are at least as
similar to each other as the threshold are related via the tolerance relation. Items which
are less similar to each other are not related via the tolerance relation. Synonymy among
words is a typical tolerance relation because, for example, “vehicle” might be a synonym
of “car” and “truck”, but “car” and “truck” might not be synonyms.

If the meanings of words were taken to be real world objects, then words such as “uni-
corn” would not have a meaning. Therefore, the meanings of words are not objects but
concepts, which have real world, imaginary or abstract objects in their extensions. Thus
denotations (as meanings of signs) can be modelled as concepts. Because representamens
and interpretations can have implicit relationships, it is advantageous to model them as
conceptual structures as well. Similarity can then be investigated, not just with respect to
individual data items but with respect to concepts. One might expect that similar repre-
sentamen concepts are mapped onto similar denotation concepts by similar interpretation
concepts. For example, traffic signs use certain shapes and colours to differentiate between
warning (red triangle), regulatory (red circle) and informative (blue square) signs. Ideally
the concepts for the representamens (built using red, blue, triangle, circle, square) should
be mapped onto denotational concepts (warning, regulation and information) in a consis-
tent manner. Although there are international standards for traffic signs, there are some
differences between countries and some inconsistencies in place. For example, the signs
for one-way streets in Germany are blue squares although they are not informative but
regulatory. SCA provides a means for investigating this. The different usages of signs in
different countries can be represented as different interpretations where signs that are not
used in a particular country are mapped onto a null concept.

Goguen’s (1999) theory of algebraic semiotics should be mentioned here. Translated into
SCA terminology, Goguen describes (partial) morphisms between representamens based
on their syntax, constituents, types and axioms. Such morphisms are then used to com-
pare representamens, for example with respect to their similarity and “quality”. While we
consider Goguen’s approach useful for specific types of representamens, we believe that it
mostly works for representamens that are structurally reasonably similar. For example, it
would be feasible to define morphisms among different vector graphics storage formats, but
it might not be possible to define syntax-based morphisms between a vector graphics and
a raster graphics representation of the same image because their construction mechanisms
are very different (using vectors versus pixels). In contrast to the difficulty of constructing
such morphisms, a human or a neural network program could easily conclude that two
representamens “look” similar without having to explain why that is the case in terms of
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Figure 1. Overview of SCA

vectors and pixels. Thus using concept lattices and tolerance relations is more general than
exactly specifying syntactic representations and their morphisms.

Fig. 1 provides an overview of SCA. As mentioned above, signs have three components:
an interpretation i, a representamen r and a denotation d. Each of the components of a
sign is mapped into a separate conceptual structure. For example, the representamens of
a set of signs are mapped into a conceptual representamen structure, which is built from
representamens collected from other signs or from background knowledge. A core question
is then what kinds of relationships can be observed between the three conceptual structures.
Fig. 1 will be more elaborated via an example in Fig. 3 below. The goal for SCA is to
provide a framework in which sign relationships are mathematically described, analysed
and compared. Some of SCA’s core semiotic notions do not depend on which formalisation
for conceptual structures is being used. In this paper we are using FCA as a mathematical
formalisation of conceptual hierarchies. Other conceptual structures (such as conceptual
graphs, formal ontologies, description logics or graph-based representations) could be used
instead.

The reason for why the components of a sign are mapped into (instead of being part of)
conceptual structures is that it allows to separate signs from concepts. It provides modelling
flexibility, allows for the integration of novel signs and for the reuse of the conceptual
structures, for example with respect to different languages. Furthermore, in applications
where the set of representamens contains all the words of a natural language, it would be
highly impractical if such a set would have to be listed explicitly as objects of a concept
lattice.

3. Core semiotic definitions

This section defines signs as elements of a triadic relation. Although concept lattices are
defined and somewhat discussed, this section focuses mainly on features of semiotic re-
lations which do not depend on concept lattices or FCA. Aspects that depend on concept
lattices and FCA are discussed in the next section.

Definition 1. For a set R (called representamens), a set D (called denotations) and a set
I of partial functions i : R 7→ D (called interpretations) a semiotic relation S is a relation
S ⊆ I ×R×D. A relation instance (i, r, d) ∈ S with i.r = d is called a sign.

We are using the notation i.r = d in analogy to programming languages instead of
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i(r) = d. The reason for this notation is explained below. The sets R, I , D and S should
be considered finite but need not be disjoint. Because denotations and interpretations are
represented by words or symbols they themselves can also be considered as representa-
mens. For example in the equation x = 5, the denotation “5” has two representamens
(letter x and number 5). Depending on the purpose of an application it is thus possible
that I , D and S are all subsets of R. It should be pointed out that while Def. 1 covers the
mathematical aspects of signs, it lacks semiotic aspects such as requiring a sign to be some-
thing that is used in communication. The following alternative definition would probably
be more acceptable from a semiotic viewpoint:

(Definition 1a). A sign is a unit of communication corresponding to a triple (i, r, d)
consisting of an interpretation i, a representamen r and a denotation d with the condition
that i and r together uniquely determine d.

But Def. 1a lacks mathematical precision and is not the basis of SCA. The two definitions
are similar but not equivalent. Mathematically sets come first in the definition of signs (as in
Def. 1). In applications the direction is often the other way around: someone observes an act
of communication, decides which are the signs and uses some form a data analysis method
to extract the sets R, I , and D and their relationships from the data. Yet another possible
definition of signs would be to describe them as rows of a three-column relational database
table with a functional dependency. This view is more dynamic because in a database, rows
(i.e. signs) can be added, modified and deleted. Thus there are different possibilities for the
definition of signs. The commonality between them is the use of a triadic relation and the
condition that i and r together uniquely determine d. This is captured in Def. 1 from a
mathematical view.

It is possible to use total functions instead of partial functions by adding a NULL-
element as shown in the next definition. Formalisations involving a NULL-element can
be complex because NULL might correspond to negative, missing or contradictory in-
formation. In the remainder of the paper, NULL-elements are only mentioned when it is
absolutely necessary and ignored otherwise.

Definition 2. For a semiotic relation S, a NULL-element d⊥ is a special kind of denotation
with the following conditions: (i) i.r undefined in D ⇒ i.r := d⊥ in D ∪ {d⊥}. (ii)
d⊥ ∈ D ⇒ all i are total functions.

In mathematics, representamens are usually ignored. In the example of x = 5 mentioned
above, x and 5 are equal as denotations, but as representamens “x” is a letter and 5 a
number. Understanding x = 5 requires an interpretation even though this is not normally
mentioned. We define α ∈ I as a standard mathematical interpretation, which is always
assumed but not explicitly mentioned. Technically, because there are differences in notation
and practices in mathematical subdisciplines, there can be more than one α interpretation,
but it is usually clear from the context which α is used. To make α explicit, one could
write α.x = α.5 or even α.x α.= α.5 instead of x = 5 to indicate that x, = and 5
are to be interpreted in the usual mathematical manner. For programming languages, α is
for example an interpretation for literals and numbers. For non-mathematical notions, α
is undefined. Priss (2016) claims that one reason why students sometimes have problems
with mathematics is because they might be incorrectly using interpretations other than α
when they are reading mathematical texts.

We define ρ ∈ I as an interpretation that explicitly maps into representamen features. For
example ρ.x = “letter x” and ρ.5 = “number 5”. We argue that equality is often not useful
for representamens because they tend to display minute variations. For example, two spo-
ken or handwritten words are never totally equal. Under a microscope, printed letters will
look differently and even on a computer they might be stored differently. Because equality
in mathematics is evaluated with respect to denotations, we use equivalence instead as the
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main relation on representamens. According to the next definition, representamen equiv-
alence should be finer grained than denotation and interpretation equality because if, for
example, “x” and “x” are considered indistinguishable as representamens, it would be dif-
ficult to communicate that they are different denotations. An interpretation of equivalent
representamens should also result in equal denotations but not vice versa as demonstrated
by the example x = 5. Representamen equivalence determines which differences are to
be ignored. For example, different fonts might be ignored for words, zooming in might be
ignored for pictures and rotation might be ignored for graphs. The next definition presents
separate sets of equivalence relations for each of the three sign components. Using func-
tions in combination with equivalence relations always poses the question whether these
are well-defined.

Definition 3. For a semiotic relation S with sets R, I , D, sets of tolerance relations TR :=
{T | T ⊆ R×R}, TI := {T | T ⊆ I × I}, TD := {T | T ⊆ D ×D} and of equivalence
relations ER ⊆ TR, EI ⊆ TI and ED ⊆ TD are defined with (d, d⊥) ∈ E ∈ ED ⇒ d = d⊥,
∀d1,d2∈R∩D : (d1, d2) ∈ E ∈ ER =⇒ d1 = d2 and ∀i1,i2∈R∩I : (i1, i2) ∈ E ∈ ER =⇒
i1 = i2 .
An interpretation i ∈ I respects E ∈ ER :⇐⇒ (∀r1,r2∈R : (r1, r2) ∈ E =⇒ i.r1 = i.r2).
A semiotic relation is well-defined for E ∈ ER if the following conditions are fulfilled:

a) ∀i1,i2∈I∀r∈R : i1 = i2 =⇒ i1.r = i2.r
b) ∀i∈I : i ∈ I respects E ∈ ER

A semiotic relation is well-defined if it is well-defined for all E ∈ ER.

In this case, i1.r = i2.r implies that they are either both defined or both undefined.
Unless mentioned otherwise, we always assume “=” ∈ EI and “=” ∈ ED and that con-
dition a) is fulfilled in this paper. If required one could rewrite condition a) using an-
other E ∈ EI . The tolerance relations are meant to be defined on the whole set (e.g.
∀r∈R : (r, r) ∈ T ) and not just on subsets. It follows that α respects equality but ρ does
not. In programming languages, arrays respect equality for their indices. For example, in
Python one can write n=4 and then employee[n] in order to retrieve employee[4].
But chr(101)+mployee[n] produces a syntax error even though chr(101) results
in “e” and + is the string concatenation because the interpretation that is applied to this
representamen does not respect equality. The fact that some interpretations do not respect
equality is the reason for using the dot notation (i.r), which emphasises that r is a represen-
tamen. For interpretations that respect equality one can write i(r) instead of i.r. The next
definition ensures that complex signs that are built up from other signs and involve multiple
interpretations are well-defined. It is assumed that condition a) from Def. 3 is fulfilled.

Definition 4. A sign chain is a sequence of elements of I and R, brackets and dots, which
is recursively evaluated starting at the innermost brackets with the condition that whatever
stands left of a dot resolves to an interpretation and what stands right of a dot to a rep-
resentamen. Interpretations which have a bracketed expression on their right must respect
equality.

For example, a sign chain (i3.((i2.r2).(i1.r1))).r has the condition that (i2.r2) and
(i3.((i2.r2).(i1.r1))) resolve to interpretations and (i1.r1) and ((i2.r2).(i1.r1)) to rep-
resentamens. In this case i3 and i2.r2 must respect equality. In general, brackets in sign
chains cannot be omitted and sign chains may not fulfil the associative law. In program-
ming languages brackets tend to be missing for the dot notation because of an implicit
rule that evaluation is conducted in sequence starting from the left. A sign chain could
for example consist of steps such as parsing and disambiguation in the process of lan-
guage understanding. For example the English word “lead” could either mean a noun
“metal” or a verb which is a synonym of “to guide”. Determining the part of speech
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Figure 2. What kind of representamen is this?

disambiguates the word. This could be represented with two interpretations i1 and i2 as
i2.(i1.“lead”) = i2.“lead/noun” = “metal lead”. Again this is a mathematical modelling
which ignores the fact that according to cognitive science, the two interpretations i1 and i2
are not independent and may be executed simultaneously.

The following definitions determine the basic structures for each of the three sign com-
ponents. In each case a concept lattice is defined. The sign components are then mapped
into such domain lattices. The sets of objects and attributes of the domain lattices are just
further sets which again need not be disjoint to each other or to the sets, S, R, I and D.

Definition 5. For a set R1 ⊆ R, a formal context (OR1
, AR1

, JR1
) and concept lattice

B(OR1
, AR1

, JR1
) called representamen domain context/lattice are defined with the con-

dition that there is a (total) function βR : R1 → B(OR1
, AR1

, JR1
) with ∃E∈ER∀r1,r2∈R1

:
(r1, r2) ∈ E ⇐⇒ βR(r1) = βR(r2).

The condition means that βR is well-defined and injective on the quotient set R1/E.
Thus the representamen domain lattice presents some modelling of the representamens as
concepts in a lattice. Examples for representamen attributes in AR are “vector graphics”,
“uppercase letter”, “word” and “English sentence”. Forming a representamen domain lat-
tice constitutes by itself an act of interpretation which can be modelled using sign chains.
For example, Fig. 2 could be interpreted to be a Latin or Greek letter X, a German traffic
sign for railway crossings seen from a distance, a multiplication sign, a tick on a form, a
word (“to x out”), and so on. What kinds of sets are chosen and how the representamens
are represented are modelling decisions which depend on applications. A representamen
can be a compound that is made up of other representamens, such as sentences consisting
of words consisting of letters consisting of strokes. At what level of granularity signs are
considered is another modelling decision. The following definitions for interpretations and
denotations are analogous to the one for representamens.

Definition 6. For a set I1 ⊆ I , a formal context (OI1 , AI1 , JI1) and concept lattice
B(OI1 , AI1 , JI1) called interpretation domain context/lattice are defined with the condi-
tion that there is a (total) function βI : I1 → B(OI1 , AI1 , JI1) with ∀i1,i2∈I1 : i1 = i2 ⇐⇒
βI(i1) = βI(i2).

Interpretation attributes might represent who is interpreting (a native speaker of a par-
ticular language, a teacher or a student, a programming language compiler, and so on) and
when and where a sign is used. This could involve a containment hierarchy. For example,
there could be an interpretation for a whole book, with separate interpretations for chapters
and paragraphs. In applications, either a lattice can be derived from a context or vice versa.
From a containment hierarchy for interpretations a lattice can be built using the method of
DedekindMacNeille completion. The context can then be formed, for example, by setting
the set AI to correspond to the meet-irreducible lattice elements.

Definition 7. For a set D1 ⊆ D, a formal context (OD1
, AD1

, JD1
) and concept lattice

B(OD1
, AD1

, JD1
) called denotation domain context/lattice are defined with the condition

that there is a (total) function βD : D1 → B(OD1
, AD1

, JD1
) with ∀d1,d2∈D1

: d1 =
d2 ⇐⇒ βD(d1) = βD(d2) and d⊥ ∈ D1 =⇒ βD(d⊥) is the bottom element of the lattice.

The condition d⊥ ∈ D1 is not redundant because there could be applications where all i
are total functions without needing d⊥. A denotation domain lattice represents the denota-
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tional knowledge of a domain. It could be derived from data or from textbook knowledge
using any of the usual FCA techniques for encoding knowledge. The denotational knowl-
edge could also be provided using other knowledge representation techniques (such as con-
ceptual graphs, description logic or formal ontologies). But for the purposes of SCA, we
are only interested in denotation domain lattices that are extracted from such knowledge.
The next definition shows how some common linguistic terms are formalised in SCA.

Definition 8. For a semiotic relation S with T ∈ TD, I1 ⊆ I , E ∈ ER
a) I1 is compatible⇔ ∀i1,i2∈I1,i1.r1 6=d⊥,i2.r2 6=d⊥ : (r1, r2) ∈ E ⇒ (i1.r1, i2.r2) ∈ T
b) I1 is mergeable⇔ ∀i1,i2∈I1,i1.r1 6=d⊥,i2.r2 6=d⊥ : (r1, r2) ∈ E ⇒ i1.r1 = i2.r2
c) (i1, r1, d1) = (i2, r2, d2)⇔ i1 = i2, (r1, r2) ∈ E, d1 = d2.
d) (i1, r1, d1) and (i2, r2, d2) are strong synonyms⇔ d1 = d2
e) (i1, r1, d1) and (i2, r2, d2) are equinyms⇔ (r1, r2) ∈ E and d1 = d2
f) (i1, r1, d1) and (i2, r2, d2) are synonyms⇔ (d1, d2) ∈ T
g) (i1, r1, d1) and (i2, r2, d2) are polysemous⇔ (r1, r2) ∈ E and (d1, d2) ∈ T
h) (i1, r1, d1) and (i2, r2, d2) are homographs⇔ (r1, r2) ∈ E and (d1, d2) 6∈ T
i) (i, r, d) is ambiguous⇔ ∃(i1,r1,d1)∈S : (r1, r2) ∈ E and d1 6= d2
j) (i, r, d) is anonymous⇔ r = d and i respects equality.

The notions in a) to i) depend on E, thus in cases of possible ambiguity, one can write
“compatible with respect to E”, “E-synonyms” and so on. The reason for excluding d⊥
from a) and b) is because, for example, variables in programming languages may be un-
defined before they are assigned for the first time. In that case, “undefined” does not con-
tradict a value that is assigned later. Mergeability means that all interpretations in I1 can
be merged into one interpretation because the result of the merger is still a well-defined
function. As mentioned before, equivalence is often more useful for representamens than
equality. Therefore two signs are equal if they have equal interpretations and denotations
but equivalent instead of equal representamens. In linguistics, synonymous words tend
to be expected to have different representamens. Thus a word might not be considered a
synonym of itself. But in that case synonymy would just be a symmetric relation, not a
tolerance relation. Anonymous signs are signs used in mathematics. As mentioned before,
a standard interpretation α can be used for mathematical representamens. If α.r is defined
then (α, r, r) with α.r = r is an anonymous sign. This means that in mathematics, only
denotational information matters. Apart from mathematical variables, other examples of
anonymous signs are programming language literals and numbers. Variables in program-
ming languages are not anonymous and their interpretations are not always mergeable
because variables tend to change their values in the course of a program being executed.

As mentioned before, equivalence and tolerance relations may be more important for
signs than equality. As shown in Prop. 1 below, some of the notions from Def. 8 are forms
of similarity among interpretations and among signs. Synonymy, polysemy and homo-
graphs are formalisations of the usual linguistic notions. They always depend on all three
components of the signs including interpretations. For example, in some interpretations
“car” and “vehicle” are strong synonyms because they are considered to have the same
meaning. In other interpretations they are just synonyms because “vehicle” might imply a
larger size than “car”. Equinymy was coined by Priss (2004) and refers here to the same
representamen being used with the same meaning under different interpretations. Thus
two instances of a word or phrase used with the same meaning in different sentences are
equinyms (for example, “car” in “My car is green. It is a great car.”). A single representa-
men used with slightly different meanings corresponds to polysemous signs, such as “car”
as a vehicle or the car of an elevator. Equinymy probably expresses what one might intu-
itively think it means for signs to be “the same”. An example of homographs is presented
by the verb “lead” and the metal “lead”.

8



October 13, 2017 International Journal of General Systems ijgs17

Proposition 1. For a well-defined semiotic relation S the following statements are true:
a) Compatibility and mergeability are tolerance relations on I×I . If all interpretations

are total functions then mergeability is an equivalence relation on I × I .
b) Equinymy and strong synonymy are equivalence relations, synonymy, polysemy and

homographs are tolerance relations on S × S.
c) Strong synonymy implies synonymy. Equinymy implies strong synonymy and poly-

semy. Polysemy implies synonymy.
d) Compatible interpretations are free of homographs.
e) For mergeable interpretations, polysemy and equinymy are the same.
f) Two anonymous signs are equinyms with respect to “=” if they are strong synonyms.
g) If E ∈ ER and T ∈ TD are both the equality relation then two anonymous signs in

mergeable interpretations i1, i2 ∈ I can only be either equal (if i1 = i2), equinyms
(if i1 6= i2) or not equal. They cannot be homographs.

Proof. a) If denotations are undefined then mergeability need not be an equivalence rela-
tion because for mergeable {i1, i2} and mergeable {i2, i3} with i2.r2 = d⊥ one cannot
conclude that i1.r1 = i3.r3.
g) In that case strong synonymy, synonymy, polysemy and equinymy all coincide.
The rest of Prop. 1 follows directly from Def. 8.

Statement g) describes the normal mathematical use of language where signs are anony-
mous and only one global interpretation α is used. Therefore mathematical variables tend
to be precisely either equal or not equal. The following definition models some notions
which are core to Peirce’s semiotics. They are included here in order to show how SCA
formalises such notions. They are probably only relevant for very specific applications.

Definition 9. For a semiotic relation S the following are defined:
a) (i, r, d) ∈ S is an icon⇔ ∃T∈TR : d ∈ R, (r, d) ∈ T
b) (i, r, d) ∈ S is an index⇔ ∃f :R 7→R : d ∈ R, i.r = f(r) = d
c) (i, r, d) ∈ S is a symbol⇔ (i, r, d) is neither icon nor index.

In the case of an icon, the representamen and the denotation are both elements of the
same set and similar to each other. Icons are more primitive than symbols because for
modelling icons one does not need to differentiate between a set of representamens and a
set of denotations. An anonymous sign is both an icon and an index. An index describes a
functional relationship among representamens. This could be smoke being an index of fire
or a finger pointing to an object. Although i and f are both (partial) functions, processing f
is simpler because it only involves R. It should be emphasised that being an icon or index
depends on i thus it cannot be concluded that f(r) = i1.r for any i1 6= i. In the exam-
ple of arrays in programming languages, an array f with index number r is interpreted as
i2.(f(r)) = i2.d in order to retrieve the value i2.d. A symbol is a sign where the relation-
ship between representamen and denotation is “arbitrary” (using Saussure’s terminology)
because there is no similarity or functional relationship between the representamen and the
denotation.

The notions of syntax, semantics and pragmatics can also be described using SCA. As
Pinker (1991) observes, language employs both rules and associative relationships. For ex-
ample, regular verbs follow rules whereas the patterns of irregular verbs have to be memo-
rised explicitly. In SCA, syntactic rules can be expressed by representamen domain lattices
whereas associative syntactic relationships are expressed by ER and TR. Semantics inves-
tigates the relationships between a representamen domain and a denotation domain lattice
where the interpretations are just treated as elements of a set. From a semantic viewpoint,
one is only interested in the set of possible denotations for a representamen but not in how
the interpretations themselves are structured. The structures and relationships between in-
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terpretations are the focus of pragmatics. For example, comparing how a representamen is
used by different people or in different contexts is a question of pragmatics.

4. Modelling semiotic relations with concept lattices

So far we have mainly focused on aspects of semiotic relations which did not rely on
concept lattices. This section discusses semiotic relations with concept lattices.

Definition 10. A semiotic relation S with concept lattices as presented in Definitions 5-7
and R = R1, I = I1, D = D1 is denoted by S?.

A question is whether and how the relationships among signs and their tolerance and
equivalence relations defined above lead to relationships among lattices. For example,
any T1 ∈ TR induces a tolerance relation T2 on the representamen domain lattice with
(c1, c2) ∈ T2 :⇐⇒ ∃r1,r2∈T1

: c1 = βR(r1), c2 = βR(r2). For a particular application,
this raises the question as to how T2 relates to the lattice structure, for example, whether
one can define a distance metric on the lattice from which T2 can be derived. Some tol-
erance relations might only be relevant for some concepts. For c ∈ B(OR, AR, JR) and
T ∈ TR, one can define c .T :⇔ ∀r1 6=r2∈R : (r1, r2) ∈ T ⇒ βR(r1) ≤ c and
βR(r2) ≤ c. Thus T is only interesting for concepts below c and for all other represen-
tamens: (r1, r2) ∈ T ⇒ r1 = r2. The interpretation domain and the denotation domain
lattices can be investigated in the same manner. The next proposition demonstrates that it is
always possible to generate a well-defined semiotic relation S? with concept lattices from
any semiotic relation S.

Proposition 2. The following construction yields a semiotic relation S? that is well-defined
for E ∈ ER. For S use (R, I ×D,J1) as representamen domain context with (r, (i, d)) ∈
J1 :⇔ (i, r, d) ∈ S and (r1, r2) ∈ E :⇔ rJ1

1 = rJ1

2 , and (I,R ×D,J2) as interpretation
domain context with (i, (r, d)) ∈ J2 :⇔ (i, r, d) ∈ S and i1 = i2 :⇔ iJ2

1 = iJ2

2 . The
denotation domain context can be chosen in any manner consistent with Def. 7.

Proof. The usual FCA definition implies: rJ1

1 := {(i, d) ∈ I×D | r1J1(i, d)}= {(i, d) ∈
I ×D | (i, r1, d) ∈ S} = {(i, d) ∈ I ×D | i.r1 = d}. Therefore (r1, r2) ∈ E ⇔ rJ1

1 =

rJ1

2 ⇔ ∀(i,d) : (i.r1 = d⇔ i.r2 = d) =⇒ ∀i∈I : i.r1 = i.r2.
Analoguously iJ1

1 = {(r, d) ∈ R × D | i1.r = d}. Therefore i1 = i2 ⇔ iJ1

1 = iJ1

2 ⇔
∀(r,d) : (i1.r = d ⇔ i2.r = d) =⇒ ∀r∈R : i1.r = i2.r. Thus the constructed semiotic
relation is well-defined.

Prop. 2 shows that a construction is always possible, but this construction may not be the
most useful modelling for applications. A denotation domain lattice could be constructed
in the same manner. Such constructions, which derive three binary relations out of a triadic
relation, are already discussed by other authors and are related to the topic of “triadic FCA”
(cf. Krolak-Schwerdt, Orlik and Ganter 1994; Lehmann and Wille 1995; Ignatov et al.
2015; Belohlavek and Osicka 2012; Belohlavek, Glodeanu, Vychodil 2013). For semiotic
analyses, however, it might be more useful to construct the three lattices from background
knowledge and not necessarily directly from the semiotic relation itself. Thus, while there
is overlap between SCA and triadic FCA, they are separate theories.

A next step is to investigate how (and whether) the interpretations as partial functions
from R to D give rise to interesting functions between the representamen and denotation
domain lattices. Fig. 3 shows an example of three lattices. The data for this example are
programming language variables. The interpretations are states of a running program. For
example, a variable “error” has the value 0 at state “i2”. The interpretation domain lattice

10
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Figure 3. Representamen, interpretation and denotation domain lattices

is shown in the bottom left. It does not provide much information other than that there are
three interpretations and i3 is in some sense more general than the other two. In the repre-
sentamen domain lattice on the left, the variable names (or representamens) are displayed
as the formal objects. Thus βR is a mapping into object concepts. The formal attributes in
this lattice refer to whether a representamen contains uppercase letters or only lowercase
letters. The attribute “syntax” characterises representamens which use a specific syntactic
structure when they are defined or used, such as square brackets in the case of arrays or the
word “new” for objects.

In the denotation domain lattice, the denotations in this example are values of the vari-
ables in a running program. They are mapped onto object concepts in the denotation do-
main lattice, but they are not shown in the lattice. Instead of the values, representamens are
shown if they have the same value for all three interpretations (i.e. equinymous signs) and
pairs of interpretations and representamens otherwise (i.e. for polysemous signs). For ex-
ample, i1.page = i2.page = i1.model = i3.model. It is now of interest to investigate whether
any representamen structures are preserved in the denotation domain. All representamens
which have the representamen attribute “syntax” are below the denotation “complex data-
structure”. Thus there is a correspondence between the representamen domain and the
denotation domain. This is shown by the dashed line in Fig. 3. The representamens with
attribute “uppercase” also relate to a concept in the denotation domain, but the reason for
this could be because this only affects one representamen. The join of the denotations of the
representamens with attribute “lowercase” is the top concept in the denotation domain lat-
tice. Thus no structure is preserved for them. The following definition describes functions
from the representamen into the denotation domain lattice.

Definition 11. For a semiotic relation S? with subsets CR, CI and CD of the sets
of concepts of the representamen, interpretation and denotation domain lattices with
d⊥ ∈ D, functions Zi : R → P(B(OD, AD, JD)) and ZCI

: P(B(OR, AR, JR)) →
P(B(OD, AD, JD)) are defined as:

a) Zi(r) := {βD(i1.r1) | ∃r1∈R,i1∈I : βR(r1) = βR(r), i1 = i}
b) ZCI

(CR) :=
⋃
i∈{i∈I|βI(i)∈CI},r∈{r∈R|βR(r)∈CR} Zi(r)

c) Z∨i (CR) :=
∨
{r∈R|βR(r)≤CR} Zi(r), Z∨(r) :=

∨
i∈I Zi(r)

d) Z∧i (CR) :=
∧
{r∈R|βR(r)≤CR} Zi(r), Z∧(r) :=

∧
i∈I Zi(r)

One can further define Z−1CI
(CD) and Z−1i ({βD(d)}) for the reverse images and Z� for

the interval from Z
∨ to Z∧.
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Figure 4. A well-defined semiotic relation

Because the join and meet relations in a lattice are commutative and associative it does
not matter whether one first iterates through interpretations or through representamens.
Thus all of the operations in Def. 11 are well-defined. The joins and meets in c) and d)
are meant to be performed on the concepts of the denotation domain lattice, i.e. on the
elements of the sets. The functions in c) and d) result in concepts and not sets of concepts
as the other functions. The functions in b) are monotonic with respect to set inclusion:
CR1 ⊆ CR2 and CI1 ⊆ CI2 ⇒ ZCI1

(CR1) ⊆ ZCI2
(CR2). Some examples for Fig. 3

are: Zi1(page) = {c7}, Zi2(page) = {c7, c8}, Z∨i2({βR(page)}) = Z∨(page) = c2 and
Z∧(page) = c14, Z�(page) = {c2, c7, c8, c14}. These different functions show that the
representamen concept for “page” corresponds in some way to the interval between c2 and
c14 in the denotation domain lattice. The exact location in the interval depends on which
of the functions is chosen. The following proposition shows that in the case of well-defined
semiotic relations, the functions are simpler. In this proposition E ∈ ER is meant to be the
same one as used for βR.

Proposition 3. For a semiotic relation S? as in Def. 11, the following statements hold:

a) ZCI
(CR) = {βD(i.r) | ∃r∈R,i∈I : βR(r) ∈ CR, βI(i) ∈ CI}

b) If S? is well-defined then Zi(r) = {βD(i.r)}
c) For S? well-defined: (i, r, d) is ambiguous⇐⇒ ∃i∈I : Zi(r) 6= {Z∨(r)}

Proof. a) x ∈ ZCI
(CR)⇐⇒ ∃r∈R,i∈I : βR(r) ∈ CR, βI(i) ∈ CI , x = βD(i.r)⇐⇒

∃r1∈R,i1∈I,r∈R,i∈I : βR(r1) = βR(r) ∈ CR, βI(i1) = βI(i) ∈ CI , x = βD(i.r) ⇐⇒
∃r∈R,i∈I : βI(i) ∈ CI , βR(r) ∈ CR, ∃r1∈R,i1∈I : βI(i1) = βI(i), βR(r1) = βR(r), x =
βD(i1.r1)
b) Follows from the definition of “well-defined”.
c) (i, r, d) is ambiguous ⇐⇒ ∃i1 : i1.r 6= i.r ⇐⇒ βD(i1.r) 6= βD(i.r) ⇐⇒ Zi1(r) 6=
Zi(r).

The semiotic relation in Fig. 3 is not well-defined because for example, “name” and
“confirm” are not mapped onto the same denotations. Fig. 4 shows a version of Fig. 3
where the representation domain lattice has been modified so that the semiotic relation
is well-defined. In this case only the representamen and denotation domain lattices are
shown but without the bottom elements of the lattices. The dashed lines show the Zi1(r)
functions. Some examples are Zi1(page) = Zi2(page) = {c7}, Z∨(page) = c7 but
Z
∨
i2({βR(page)}) = c2, Zi1(model) = {c7} 6= {c8} = Zi2(model) and Z∨(model) = c2

because “model” is ambiguous.
Another question is if and when any of the functions from Def. 11 are order-preserving.

Many questions have not yet been answered. Closure operators could be investigated. Lat-
tice theoretical properties could be used to define further structures on the sign components.
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For example, r1 ≤ r2 :⇐⇒ βR(r1) ≤ βR(r2). But from an applied mathematics view-
point, it would be of interest to first establish the usefulness of SCA in more applications
before the theory is developed further. As mentioned in the title and introduction, this paper
is intended as a proposal for further research.

5. How to use SCA in applications

SCA has already been used for a number of applications. The notion of “anonymous signs”
mentioned in Section 3 was first introduced by Priss (2004) in order to explain why vari-
ables used in mathematics are quite different from variables used in programming lan-
guages. As mentioned above, Priss (2016) speculates that anonymous signs might be one
reason why many students perceive mathematics as a difficult subject to learn. Priss (2015)
uses SCA for analysing programming source code and to generalise some constructions
from relational concept analysis by means of SCA. Priss (2016) shows that SCA is a pos-
sible tool for investigating conceptual learning. In that respect SCA can be compared to
other educational analysis methods (such as Knowledge Space Theory [Albert and Lukas
1999; Falmagne et al. 2013] and APOS theory [Dubinsky and Mcdonald 2002]) because
concept lattices facilitate the visualisation of student learning progress and misconceptions
between the concepts of a student and of an expert.

The framework of SCA is quite open with respect to how the data is modelled and
investigated. Based on the definitions provided in Section 3 there are, however, a number
of typical tasks which are elaborated in this section. Homograph detection is an example of
such a task. As defined above, homographs are signs with equivalent representamens and
dissimilar denotations. In programming languages, homographs occur if a single variable
or other identifier is used for several completely different purposes. An example is “error”
in Fig. 3 in contrast to “name”. Because Z∨(name) = c3 is not the top node, “name”
is most likely polysemous whereas Z∨(error) = c1 is the top node, possibly indicating
that “error” could be a homograph. While homographs are not necessarily programming
errors, they can make it more difficult to read and understand code, which might lead
to errors. Once homographs have been detected, they can be eliminated by renaming. In
educational applications of SCA, homographs occur if, for example, a student uses a term
inconsistently with how it is used by experts. Detecting homographs helps a teacher to
determine which are difficult concepts of a domain. Homographs which are inherent in
domain knowledge (when a term is used for two unrelated concepts even by experts) should
also be highlighted to teachers because students should be alerted to such problems in the
domain knowledge.

It is also useful to search for and identify synonyms by investigating how representa-
mens relate to denotations. In programming languages, strong synonyms are pointers or
references. In that case synonymy depends on interpretations because the values of point-
ers or references can change during the execution of a program. In order to avoid redun-
dancy it might be necessary to detect strong synonyms and eliminate one of the redundant
representamens.

For the three domain lattices, it may be of interest to investigate whether the β-functions
provide sufficient coverage of the lattices. If a concept is neither an image of a β-function
nor a meet- or join-combination of other concepts that are images of β-functions, it is not
relevant for the semiotic relation that is being mapped. In natural language research, deno-
tational concepts which are not an image of a β-function but a meet- or join-combination
are called lexical gaps because they can be expressed but not by a single representamen.
Two different natural languages which are mapped into a single denotation domain lattice
might show lexical gaps as differences in lexicalisation between the languages.
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One purpose of the Z-functions is to determine whether structures from the representa-
men domain are mapped into the denotation domain. Well-defined semiotic relations with
order-preserving mappings are highly structurally aligned. In applications where the rep-
resentamens are used to express information about a domain in a natural language a high
degree of alignment between representamen and denotation structures would be desirable.
This is because one would hope that natural language expressions present their meanings
fairly consistently.

In many of the applications of SCA so far, the interpretation domain lattice has not
been used much. As mentioned in Section 3, interpretations could present some form of
containment hierarchy, such as a book, a chapter, a paragraph and a sentence or a whole
program, a class or function, a loop and a line of code. In that case the order between
finer- and broader-grained interpretations should be preserved. Instead of eliminating or
renaming representamens in order to avoid synonyms and homographs, it is also possible
to eliminate interpretations. For example, if representamens are provided in both German
and English, then it is not surprising that many synonyms occur. Eliminating one of the
interpretations (German or English) will remove such synonyms. More applications are
needed in order to determine how to use the interpretation domain lattice most effectively.

6. Conclusion

In conclusion, this paper demonstrates that starting from a triadic relation for signs, one
can develop a mathematical formalisation of core notions from semiotics and linguistics.
Because it is convenient to model the meaning of signs as concepts, it is promising to
combine this triadic relation with formalised conceptual structures. It can be challeng-
ing to clearly distinguish between denotations (which are differentiated by being equal or
unequal), representamens (whose equivalence relation is finer grained than equality) and
signs. In common language such distinctions are rarely expressed because a sign is usually
referenced via its representamen and, especially in mathematical contexts, it only matters
whether items are (denotationally) equal and not how they are represented. Thus it is an im-
portant contribution of SCA to provide a terminology and methodology for modelling and
investigating the sign components independently. We are not aware of any other existing
mathematical semiotics theory which accomplishes this.

SCA provides many possibilities for further modelling, such as how to characterise struc-
tures and how to define mappings among the conceptual structures. While the general
usefulness of SCA has been demonstrated in a small number of applications, more appli-
cations are needed in order to decide which directions to take with further modelling. Thus
this paper presents the core notions of SCA but is also a proposal for future development.
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