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Abstract. This paper presents an application of relation algebra to lexical data-
bases. The semantics of knowledge representation formalisms and query lan-
guages can be provided either via a set-theoretic semantics or via an algebraic
structure. With respect to formalisms based on n-ary relations (such as relational
databases or power context families), a variety of algebras is applicable. In stan-
dard relational databases and in formal concept analysis (FCA) research, the al-
gebra of choice is usually some form of Cylindric Set Algebra (CSA) or Peircean
Algebraic Logic (PAL). A completely different choice of algebra is a binary Re-
lation Algebra (RA). In this paper, it is shown how RA can be used for modelling
FCA applications with respect to lexical databases.

1 Introduction

Formal Concept Analysis (FCA) is a method for data analysis and knowledge repre-
sentation that provides visualisations in the form of mathematical lattice diagrams for
data stored in “formal contexts”. A formal context consists of a binary relation between
what are named “formal objects” and “formal attributes” (Ganter & Wille, 1999). FCA
can, in principle, be applied to any relational database. Lexical databases, which are
electronic versions of dictionaries, thesauri and other large collections of words pro-
vide a challenge for FCA software because the formal contexts of lexical databases
tend to be fairly large consisting of 100,000s of objects and attributes. An overview of
FCA applications with respect to lexical databases can be found in Priss & Old (2004).
That paper also provides pointers to future research, for example, with respect to spe-
cific implementations of a construct called a “neighbourhood lattice”. In this paper, we
are continuing the thread of that research and provide a further mathematical analysis
supported by empirical data from Roget’s Thesaurus.

For the development of a mathematical analysis of structures in lexical databases it
is beneficial to make use of existing relational methods. In particular, this paper elab-
orates on how methods from relation algebra (RA) can be applied. RA is a perfect
companion for FCA because, while FCA facilitates visualisations of binary relations,
RA defines operations on binary relations. Thus RA seems a natural candidate for a
context-relation algebra as defined in Sect. 3. Section 2 compares RA to other alge-
bras of relations and explains why RA is more suitable for FCA applications than the
other methods. Section 4 focuses on the applications of RA/FCA in the area of lexical
databases using examples from Roget’s Thesaurus.

? This is a preprint of a paper published in Schärfe; Hitzler; Ohrstrom (eds.), ICCS 2006,
Springer Verlag, LNAI 4068, 2006, p. 388-400.c©Springer Verlag.



2 Algebras as a representation of logical structures

Logicians usually employ set-theoretic models for the formal semantics of formal lan-
guages. But it is also possible to use algebraic structures instead of set-theoretic models
because a formal language can be first interpreted as an algebra, which then further
can be interpreted as a set-theoretic structure. The advantage of this approach is that
additional structures are represented in the algebra. Historically, the development of
formal logic has been closely tied to the development of algebras of relations (cf. Mad-
dux (1991)) as is evident in Peirce’s work in both fields. The modern field of Algebraic
Logic studies the relationship between different types of logics and different types of al-
gebras (cf. Andreka et al., 1997). Surprisingly many structures from logic can be trans-
lated into algebraic structures and vice versa. The translations are beneficial because
theorems and methods from either field become available in the other.

With respect to relational databases and other structures based on n-ary relations
(such as power context families in FCA (Wille, 2002)), traditionally the most popu-
lar algebras use n-ary relations as basic units. Codd’s (1970) modelling of relational
databases with relational algebra (RLA) is well known. With respect to power context
families, the algebra of choice is usually Peirce Algebraic Logic (PAL), such as in the
modelling suggested by Eklund et al. (2000). Both RLA and PAL and a third algebra
called Krasner algebra (cf. Hereth Correia & Pöschel, 2004) are very similar in nature
to Henkin & Tarski’s (1961) Cylindric Set Algebras (CSA). CSA, RLA, PAL and Kras-
ner algebra all have the expressive power of first order logic (FOL) with equality (cf.
Van den Bussche (2001) for CSA and RLA and Hereth Correia & Pöschel (2004) for
PAL and Krasner). It is quite possible that they are equivalent or even isomorphic to
each other in some sense (for CSA and RLA this is investigated by Imielinski & Lipski
(1984); for PAL and Krasner, by Hereth Correia & Pöschel (2004)).

In addition to CSA, Tarski (1941) also studied an algebra which is quite different
and goes back to Peirce, De Morgan and Schroeder (cf. van den Bussche (2001) for
an overview). This algebra is called relation algebra (RA) – the similarity in name to
Codd’s relational algebra (RLA) is unfortunate, but these names are established in the
literature. The difference between RA and CSA is that RA uses exclusively binary rela-
tions, whereas CSA and the other algebras use n-ary relations. At first sight, this appears
to be a limitation of RA. But in fact, RA is quite powerful and has the expressive power
of FOL with up to three variables. If one adds a form of projection operation to RA,
one can obtain what is called a Fork algebra (FRA)1 which has the expressive power
of full FOL, but still only uses binary relations (Frias et al. 2004). In FRA, n-ary re-
lations are encoded as a part-whole structure among binary relations. For example, a
ternary relation consists of a binary relation, whose left or right element contains two
parts which can be retrieved using the projection operation. While this may sound com-
plicated, the operations of RA are overall much simpler (and easier to implement) than

1 For the purposes of modelling FCA contexts with RA (Priss, 2006), only two elements that
contain information about projections are required from FRA but none of the other operations.
Thus in the remainder of this paper, the abbreviation RA is used to mean “RA including FRA
elements if needed”.



the operations of CSA; and RA has many interesting properties that can be calculated
on an abstract level (cf. Pratt (1992) and (1993) for an overview).

We believe that RA is currently under-valued among computer scientists, although
there has recently been an increased interest in relational methods in computer science
as evidenced by the recent creation of a new journal in this field2. Part of the reason
for RA’s lack of popularity may be the fact that any university student who learns some
mathematics is likely to learn some linear algebra. But not even every full time math-
ematics student learns about universal algebra, algebraic logic and lattice theory. With
respect to physical space, linear algebra and vector spaces are useful models, but we
would argue that, with respect to information spaces, perhaps other algebras than linear
algebra can be more useful3. This claim is supported by the results of algebraic logic,
which demonstrate the close connection between logic and algebra. An elaboration of
this claim with respect to the use of non-linear algebra-based methods in information
retrieval can be found in Priss (2000).

Apart from the availability of simpler operations in RA, another advantage of RA
is the availability of visualisations. There are several types of visualisations for differ-
ent algebras: Venn Diagrams for set-based Boolean algebras, n-dimensional coordinate
systems for vector spaces and CSA-style operations (cf. Andreka et al. 1997), Peirce’s
Existential Graphs for PAL-style operations. But all of these have the limitation that
they become difficult or impossible to draw as the complexity increases. They tend to
be suitable for instances of relations (the relationship between a few points in space
or between a few Existential Graphs), but not for an overview of a larger system of
relations. On the other hand, because RA uses solely binary relations, the visualisation
methods of FCA are instantly available (i.e. concept lattices). Although FCA visualisa-
tions also have a limit with respect to how much complexity can be represented, that
limit is much higher than for n-dimensional vector spaces. For example, it is already dif-
ficult to represent 3-dimensional vector spaces on paper, but a concept lattice can easily
represent a (Boolean) lattice with up to 5 independent co-atoms (corresponding to 5 di-
mensions), and many more if they are not completely independent. Methods of zooming
and nesting are available for larger systems using the software TOSCANA (Eklund et
al., 2000). In that manner, FCA visualisations enable users to obtain an overview of
larger sets of data and to explore hidden structures among the data.

Of course, FCA visualisations have always been applied to power context families
and many-valued contexts. The strategy that is normally used is to first apply PAL op-
erations to formal contexts and then to extract a binary relation from the n-ary relations,
by selecting two columns with or without scaling and applying combination operations
to columns before selecting them. But that implies that it is also conceivable to reverse
these two steps and to construct a binary encoding of the n-ary relations right away and
then to use RA to operate on these formal contexts.

2 www.jormics.org
3 An anonymous reviewer of this paper remarked that a similar dichotomy can be found in

other areas of mathematics: “in topology, Hausdorff spaces are convincing models of real
geometries, but T0 spaces are more interesting from a logical viewpoint. Likewise, classical
metric spaces are nice generalizations of Euclidian distances, while ultrametrics are often more
appropriate to measure the ‘distance’ between pieces of information.”



3 Context-RAs and Context Algebraic Structures

This section provides a brief introduction into how relation algebra can be applied to
FCA. A more detailed explanation of this topic can be found in Priss (2006), from which
the definitions below are taken. The cross table of a formal context can be considered
a Boolean (or binary) matrix in the sense of Kim (1982), for which matrix operations
are defined as follows: with(i, j)I denoting the element in rowi, columnj in matrix I
and∨, ∧ and¬ denoting Boolean OR, AND and NOT:(i, j)I∪J := (i, j)I ∨ (i, j)J ;
(i, j)I := ¬(i, j)I ; (i, j)I◦J := 1 iff ∃k : (i, k)I ∧ (k, j)J ; (i, j)Id := (j, i)I . The

operations∩ and⊆ are as usual:I ∩ J := I ∪ J andI ⊆ J :⇐⇒ I ∩ J = I. A matrix
containing all 0’s is denoted bynul; a matrix with all 1’s isone, a matrix with 1’s on
the diagonal and 0’s otherwise isdia. A matrix is symmetric ifI = Id, reflexive if
dia ⊆ I, transitive ifI ◦ I ⊆ I.

To distinguish between operations on sets and on matrices, we use typewriter font
(e.g.A, B) for sets and italics (e.g.A,B) for matrices. A formal context normally con-
sists of two sets and a matrix:(G, M, I). In this paper, all formal contexts of an applica-
tion are assumed to be defined with respect to a finite, linearly ordered setACT called
anactive domain. That means that for all sets of objects and attributes:G, M ⊆ ACT. A
setA is defined as the set of all Boolean|ACT| × |ACT| matrices together with an inter-
pretation that ensures that, semantically, forI ∈ A and1 ≤ n ≤ |ACT|, the nth row and
column inI corresponds to the nth element inACT. It is then said thatI is based onA
denoted byIA (although the subscript can be omitted if it is clear which active domain
is meant).

Definition 1. A matrix-RA based onA is an algebra(R,∪,− , one, ◦,d , dia()) where
one ∈ R is a reflexive, symmetric and transitive matrix;R := {IA|IA ⊆ one} is a set
of Boolean matrices;∪,− , ◦,d are the usual Boolean matrix operations; and for any set
S ⊆ ACT anda(n) denoting the nth element inACT, dia(S) is defined by(i, j)dia(S) = 1
iff i = j anda(i) ∈ S (but only ifdia(S) ⊆ one).

It can be shown that a matrix-RA is an RA and fulfills all the axioms of an RA, such
as(R,∪,∩,− , nul, one) is a Boolean algebra;◦ is associative and distributive with∪;
dia is a neutral element for◦ (but unique inverse elements need not exist);(Id)d = I;
(I ∪ J)d = Id ∪ Jd; (I ◦ J)d = Jd ◦ Id; and so on (see Priss (2006)).

With G, M ⊆ ACT, a formal context can be represented “based onA”: the sets can be
represented asdia(G) anddia(M) or combined assqr(G, M) := dia(G) ◦ one ◦ dia(M).
A formal context can then be represented using three matrices:(dia(G), dia(M), IA) or
using two matrices(sqr(G, M), IA), in both cases withIA ⊆ sqr(G, M). A formal context
without empty rows or columns can be represented by a single matrix:IA. A natural
RA can be defined for any set of formal contexts:

Definition 2. A context-RA based onA for a set of formal contexts is the smallest
matrix-RA based onA that contains these contexts.

Instead of representing every formal context using|ACT| × |ACT| matrices, it is also
possible to represent formal contexts in the usual way, but in that case, the RA oper-
ations need to be modified (see the next definition). The setsG, M ⊆ ACT are assumed



to be linearly ordered according toACT. This linear order ensures that operations can
be defined among formal contexts which have different sets of objects and attributes.
In this representation, a formal context(G, M, I) based onACTcontains a Boolean ma-
trix I of size |G| × |M| where the ith row corresponds to the ith element inG and the
jth column corresponds to the jth element inM. This can be denoted asIG,M. But in the
remainder of this paper the subscript ofI is omitted, if the formal context is denoted
using sets of objects and attributes (not matrices). In these cases, it is always assumed
thatI ’s dimensions correspond to its sets of objects and attributes.

Definition 3. For formal contextsK1 := (G1, M1, I) andK2 := (G2, M2, J) based on
ACTthe following context operations are defined:
K1 t K2 := (G1 ∪ G2, M1 ∪ M2, I t J) with gI t Jm :⇐⇒ gIm or gJm
K1 u K2 := (G1 ∪ G2, M1 ∪ M2, I u J) with gI u Jm :⇐⇒ gIm andgJm
K1 � K2 := (G1, M2, I � J) with gI � Jm :⇐⇒ ∃n∈(M1∩G2) : gIn andnJm
K1 := (G1, M1, I); Kd

1 := (M1, G1, I
d).

Definition 4. A context algebraic structure (CAS) based onACT is a three sorted al-
gebra(R1, R2, R3,t,− , �,d , dia(), set(), (·, ·, ·)) whereR2 is a set of subsets ofACT,
R3 is a set of Boolean matrices,R1 is a set of formal contexts based onACT and con-
structed using the partial function(·, ·, ·) : R2

2 × R3 → R1; t,− , �,d are according
to Definition 3;setG(I) := {g ∈ G | ∃m∈M : gIm}; setM(I) := {m ∈ M | ∃g∈G : gIm};
anddiaG(S→) is defined by(i, j)diaG(S→) = 1 iff i = j and for the ith element inG:
g(i) ∈ S; diaM(S↑) is defined analogously.

If G1 = G2, M1 = M2, then∪ and∩ can be used instead oft andu. If M1 = G2,
then◦ can be used instead of�. Using these definitions, the normal FCA operations can
be defined, such as the prime operator (cf. Priss (2006)), using either context-RAs or
CAS. For many-valued contexts and power context families, a fork algebraic extension
is required (Priss, 2006), but that is not relevant for this paper.

For implementation purposes, it should be noted that it is not suggested that by
using matrix-RAs for modelling contexts that these actually have to be represented as
giant matrices in a computer. In FCA applications, giant formal contexts are usually
sparse matrices or contain many duplicate rows or columns. When dealing with sparse
matrices, non-RA-based algorithms might be faster, but RA can be used as an underly-
ing theory for proving theorems. This is shown using examples from lexical databases
in the next sections. On the other hand, with respect to small contexts (i.e. less than
100 objects and attributes), RA operations can be directly implemented. RA software
already exists4 and could possibly be combined with existing FCA software. RA oper-
ations could then be used as an additional query interface.

4 Lexical Databases

A lexical database is defined here as an organised collection of words in electronic
form. That includes dictionaries such as Webster’s or the Oxford English Dictionary,

4 RelView:www.informatik.uni-kiel.de/˜progsys/relview.shtml



with formal definitions and glosses; semantic lexicons such as Roget’s Thesaurus (Ro-
get, 1962) and WordNet (Miller et al. (1990)), organised by conceptual categories and
lexical relations; and bilingual dictionaries, where the primary structure is a conceptual
mapping between languages. Previously, Priss & Old (2004) developed methods for
suitable representations for lexical databases – a set of guidelines for visualising lexical
relations using FCA.

Roget’s Thesaurus (ROGET), in particular in the form of a lexical database5, is the
source of examples used in this paper. ROGET consists of a conceptual hierarchy, at the
bottom of which are words grouped by shared meaning. These groups are referred to as
senses, and members of a particular group are commonly referred to as synonyms. The
relationship between words and senses can be represented as a formal context where
instances (actual entries of particular words in particular senses) are represented by
a cross in the context (e.g. Fig. 1). In this paper, the term “entry” is reserved for this
relationship between words and senses. A word has usually more than one sense (several
entries in ROGET); and each sense is usually represented by (and contains) more than
one synonym. The word “over”, for example, has 22 senses in ROGET, represented by
22 entries in the thesaurus; and the number of entries in those 22 senses (synonyms
sharing a sense with over) ranges from 3 to 37. The question which arises is: which
words and senses should be included in a formal context for a given word? A possible
answer to this question is provided by neighbourhood contexts and lattices as discussed
in the next section.
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Fig. 1.Words, senses and entries in Roget’s Thesaurus

4.1 A formalisation of neighbourhood lattices using RA

A mathematical definition of “neighbourhood lattices” of Roget’s Thesaurus was orig-
inally defined in an unpublished manuscript by Rudolf Wille and can be found in Priss

5 The relational database used in this paper is based on Roget (1962), which was converted to
electronic format by Dr. W. A. Sedelow and Dr. S. Yeates Sedelow and edited and enhanced
by L. J. Old.



(1998). But, although neighbourhood lattices have been produced for numerous exam-
ples over the years, so far the underlying theory has not been further investigated. This
section shows how RA can be used to analyse and model the structures of neighbour-
hood lattices. A neighbourhood lattice starts with a wordw, collects all the senses thatw
has, then collects all other words that also have these senses and so on. Or, alternatively,
the process can be started with a sense, collecting all its words and so on. The operation
of collecting all objects that an attribute has (or vice versa) is called a “plus operator”
(Priss & Old, 2004). Under different names, the idea of the plus operator can be found
in many linguistic applications, such as starting with a word in one language, then re-
trieving all the translations in another language, and so on (e.g. Wunderlich (1980) or
Dyvik (1998)). Using RA, the plus operator is defined as follows:

Definition 5. For a context(G, M, I), H ⊆ G, N ⊆ M, a column matrixH that has a 1 in
the position of each element ofH (i.e.,H := diaG(H→) ◦ oneG,{}), andN an analogous
row matrix, a plus operator is defined asH+ := Hd ◦ I andN+ := I ◦Nd.

It follows thatH+ is a row matrix andN+ is a column matrix. Applying the plus op-
erator twice yieldsH++ = I◦(Hd◦I)d = I◦Id◦H andN++ = N◦Id◦I; three times:
H+++ = Hd◦I◦Id◦I andN+++ = I◦Id◦I◦Nd, and so on. A neighbourhood context
can utilise the plus operator any number of times and can be started with sets of objects
or attributes. A typical neighbourhood context is(setG(H++), setM(H+++), I). The
RA representation of the plus operator implies that the operator is essentially formed
by repeated composition ofI andId. For finite matrices repeated composition leads to
a “transitive closure”, normally defined asItrs := I ∪ (I ◦ I)∪ (I ◦ I ◦ I)∪ .... It should
be noted that the calculation of a transitive closure is not an FOL operation, but an ad-
ditional operation that cannot axiomatically be derived from the other RA operations.

If a matrix I is reflexive in all rows that are not empty, thenItrs = I ◦ I ◦ I ◦ ...
because∀x,y : (xIy ⇒ xIx, xIy) ⇒ ∀x,y∃z : (xIy ⇒ xIz, zIy) ⇐⇒ I ⊆ I ◦ I.
The matrix(I ◦ Id) which is used in neighbourhood contexts is reflexive for non-empty
rows, i.e.xIy⇒ x(I ◦Id)x, becausex(I ◦Id)y⇐⇒ ∃z : xIz, yIz. Thus(I ◦Id)trs =
(I◦Id)◦(I◦Id)◦.... The matrix is also symmetric becauseI◦Id = (I◦Id)d according to
the rules ford. This implies the following lemma and leads to the definition of a context
which uses this matrix. Figure 2 provides an illustration.

Lemma 1. If I is a matrix of a formal context without empty rows and without empty
columns, then(I ◦ Id)trs is an equivalence relation on objects and(Id ◦ I)trs is an
equivalence relation on attributes.

Definition 6. With Idec := I ◦ (Id ◦ I)trs, the neighbourhood closure context of a set
H of objects is defined as(setG((I ◦ Id)trs ◦H), setM(Hd ◦ Idec), I) and of a setN of
attributes as(setG(Idec ◦ Nd), setM(N ◦ (Id ◦ I)trs), I). Its corresponding lattice is
called the neighbourhood closure lattice.

Idec (where “dec” stands for “decomposition”) has some interesting properties. For
example, it does not matter whether one starts the calculation with objects or attributes.
The properties are summarised in the next lemma. A horizontal decomposition of a
lattice is a decomposition into components whose horizontal sum (Ganter & Wille,
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Fig. 2.An example illustrating Lemma 1 and Lemma 2

1999) is the original lattice. If one removes the top and bottom nodes from a lattice, then
the remaining connected graphs are the components of the horizontal decomposition.

Lemma 2. For finite matricesI:

1. Idec = (I ◦ Id)trs ◦ I = I ◦ (Id ◦ I)trs.
2. I ⊆ Idec.
3. Idec implies a horizontal decomposition of the concept lattice ofI.

Proof: 1) If, for example,(Id◦I)trs = (Id◦I) and(I◦Id)trs = (I◦Id)◦(I◦Id) but
(I◦Id)◦(I◦Id)◦I 6= I◦Id◦I then this would be a contradiction toId◦I◦Id◦I = Id◦I
because of(Id ◦ I)trs.
2) xIy ⇒ ∃z1,...,zn : xIz1, z2Iz1, z2Iz3, ..., znIy ⇐⇒ x(I ◦ Id ◦ ... ◦ Id ◦ I)y with
x = zi for eveni andy = zi for oddi.
3) Because of Lemma 1 and Lemma 2.2.

Thus the neighbourhood closure lattice of an object or an attribute is the compo-
nent of the horizontal decomposition of the original lattice that contains the object or
attribute. This is, of course, what was to be expected given the definition of the plus op-
erator – but the RA modelling provides an interesting representation of how the neigh-
bourhood closure context is computed.

For small formal contexts, it is trivial to calculate neighbourhood closure contexts
because one simply needs to decompose the lattice. But for large formal contexts, it is
not efficient to first calculate the whole lattice if one is only interested in the neighbour-
hood of some objects or attributes. In that case, it is much more feasible to calculate



only neighbourhood closure lattices because these contain the complete information
about an object or attribute. This is especially the case if a lattice contains a few large
components and many small components and one is interested in objects or attributes
that belong to the small components (see the next section). In some cases, even neigh-
bourhood closure lattices may be too big, in which case simple neighbourhood lattices
may be a sufficient approximation. Future research should be conducted to develop
heuristics to determine which neighbourhood lattice is best for which type and size of
context. It might also be of interest to obtain heuristics for estimating how many itera-
tions are needed to reach the transitive closure.

4.2 Empirical results for a neighbourhood closure context of ROGET

Using the RA formalisation as a guideline, we have calculated the neighbourhood clo-
sure context for ROGET. Considering that the full ROGET context consisting of all
words and senses has about 113,000 objects, 71,000 attributes and 200,000 crosses,
calculating a transitive closure is not trivial. Calculating the neighbourhood closure con-
text for the full ROGET database results in 26,314 equivalence classes, or components,
ranging from one largest component of 138,919 entries (belonging to 38,621 senses),
to 22,206 single-entry components. This means that the majority of entries in ROGET
(about 70%) are connected, either by words with shared senses (synonymy) or by senses
having shared words (polysemy). The majority of the single-entry components derive
from ROGET lists, a classification type where words representing such objects as ship
parts, species of animal, or capital cities, each occupy a single sense and have no syn-
onyms. The components with 10 to 28 senses typically contain words that are fairly
specialised, but still somewhat polysemous, such as belief systems (“freethinker”, “ni-
hilist”), occupations (“moneylender”), musical forms (“serenade”), temporal adjectives
(“dayly”) and countries and capital cities, which happen to occur in more than one list.

The distribution of component sizes is shown in Fig. 3. To display the number of
components (y-axis), a log2 function was used. A distribution consisting of one large
component, a large number of tiny components and a smaller number of exponentially
distributed components in between has been called a “power law distribution” by Stro-
gatz (2001). Power law distributions are a phenomenon found among such diverse areas
as word or letter frequency in text, strength of earthquakes, connectivity in the brain and
HIV epidemics (Barabasi, 2002), the distribution of forest fires, species group size in
biology, and web sites on the Internet. There has been some debate as to the actual
significance of power distributions but Barabasi (p. 77) makes the claim that: “Nature
normally hates power laws. In ordinary systems all quantities follow bell curves, and
correlations decay rapidly, obeying exponential laws. But all that changes if the system
is forced to undergo a phase transition. Then power laws emerge – nature’s unmistak-
able sign that chaos is departing in favor of order.” Thus it is of potential significance
that components in ROGET follow this particular distribution.

4.3 Antonymy

A second example is the treatment of antonymy. Antonyms are generally known as
words with opposite meanings. Antonymy is interesting for two reasons. First, antonymy
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is what is called a “lexical relation” in WordNet (Miller et al., 1990). That means that
it is a relationship between senses of words and not between words. For example, “big”
and “small” can be considered antonyms. But synonyms of “big” (such as “huge”) need
not be antonyms of “small” and its synonyms. To model this using RA and the ROGET
context from the previous section, it would be necessary to use a Fork relational (FRA)
matrix and projections. This is because a binary relation among antonyms would cor-
respond to a relation among word/sense pairs which would need to be encoded using
FRA. For the purposes of this paper, we are treating antonymy as a relation among
words (similar to synonymy), thus avoiding the need for FRA.

Second, even though antonyms express some form of contrast, negation or duality,
they are also usually quite close in meaning. For example, “hot” and “cold” both de-
scribe temperature; “up” and “down” both describe direction. Word association studies
(where a person is told a word and has to name the first word that comes to mind) show
that antonyms are as closely associated in the mental lexicon as are synonyms (Miller
et al., 1990).

ROGET does not identify antonyms on a sense-level. The first edition of the book
version of Roget’s Thesaurus identified antonymous categories by arranging them op-
posite to each other in the table of contents. A similar structure on the category-level has
been included in ROGET. Furthermore, we have included in ROGET some data that is
available from word association tests (Nelson et al., 1998) in the form of an antonymy
relation among words.



The goal of this section is to detect and analyse this second feature of antonymy
(contrast versus shared synonyms) in ROGET. For example (cf. Fig. 4), on a category
level, “293 progression” (containing “progress”) and “294 regression” (containing “re-
treat”) are antonyms in ROGET. They share the higher-level class of “Motion With
Reference To Direction”. They also share a synonym “go” in category “289 direction”.
Table 1 shows a (manually compiled) list of antonyms from word association data,
which share a synonym in ROGET. It should be noted that in this case, synonymy is not
only evaluated on the sense-level but also on the paragraph level. That means that all
words in a paragraph of ROGET are considered synonyms for this purpose.

go

2. IV. D motion with reference to direction

294 regression

retreat

293 progression

progress

289 direction

Fig. 4.Antonymous categories share meaning

Table 1.Antonyms that share synonyms

antonym 1shared synonymantonym 2
give yield accept
add compute subtract

descend slope ascend
editor reviewer author
after then before
white bleak black
sweet brisk bitter
suck snuffle blow
sharp abrupt blunt
effect sequence result
major elective minor
future sometime past

One approach to studying shared meanings among antonyms is to identify those
neighbourhood contexts of antonyms where the sets of attributes are not disjoint. In this



case, again it is useful to consider paragraphs as attributes instead of senses because
otherwise there would not be much overlap. But because the sets of synonyms at that
level are large, the plus operator is used only once. Thus, ifH denotes the column matrix
which contains exactly one 1 in the position of a wordw andJ denotes the column
matrix which contains one 1 in the position of the antonym ofw and ifH++∩J++ 6= ∅
then the neighbourhood context(setG(H ∪ J ∪ (H++ ∩ J++)), setM(H+ ∪ J+ ∪
(H++∩J++)+), I) is formed. Figure 5 shows the example of “hot” and “cold”, which
share “keen” as a synonym if synonymy is evaluated at the paragraph level. In this case
the shared synonym refers to metaphoric senses of the original words. It would be of
interest to conduct a more detailed investigation of all such cases in ROGET in future
research.

Fig. 5.Overlapping neighbourhoods for antonyms

5 Conclusion

This paper demonstrates the applicability of RA formalisations for modelling lexical
databases with FCA by using “neighbourhood contexts and lattices”. Specific exam-
ples are neighbourhood closure contexts of the complete ROGET context and neigh-
bourhood lattices for antonymous words. The examples show that different types of
neighbourhood contexts are relevant for different aspects of lexical databases. But the
research presented in this paper is not restricted to linguistic applications. Similar struc-
tures could be investigated in concept lattices in other application areas.
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