
Establishing connections between Formal Concept
Analysis and Relational Databases

Uta Priss

School of Computing, Napier University, Edinburgh, UK
www.upriss.org.uk

u.priss@napier.ac.uk

Abstract. The relationship between relational databases and formal concept anal-
ysis (FCA) has been the topic of several papers in the past. This paper intends to
extend some of the ideas presented in the previous papers by analysing the rela-
tionship between FCA and two central notions of relational databases: database
schemata and normalforms. An object-relational algebra is suggested in this pa-
per as a possible future replacement of relational algebra.

1 Introduction

The relationship between relational databases and formal concept analysis (FCA, cf.
Ganter & Wille (1999)) has been the topic of several papers in the past. Hereth (2002)
discusses relational scaling and databases. He translates relational algebra, which pro-
vides a theoretical foundation for relational databases, into an FCA representation. This
paper intends to extend the previous research on FCA and databases, by analysing areas
of database design in which FCA methods could be useful for modelling and visualisa-
tion: the areas of database schemata and normalforms.

This paper attempts to develop the foundations for an “object-relational algebra”,
which one day may serve as a substitute for the traditional relational algebra used as
the foundation of the database query language SQL (cf. Negri et al. (1991)). Object-
relational algebra is compatible with FCA because it uses binary relations, which can be
interpreted as formal contexts. Some of the context concatenations proposed in object-
relational algebra have already been used in other FCA applications (such as described
by Priss(1998)).

With respect to database normalforms, Hereth (2002) has already described the rela-
tionship between FCA and functional dependencies, which are essentially implications
between different columns of the database tables. Related to functional dependencies
are several normalforms, which are defined in traditional database theory as a means
of reducing redundancy and avoiding update anomalies in relational databases. In this
paper, it is argued that FCA can also be used to visualise normalforms, which could be
beneficial primarily for educational purposes. To our knowledge, so far this relationship
between normalforms and FCA has never been stated in any research papers.

2 An Object-Relational Algebra

In traditional database theory, a relational algebra is used as the underlying formalisa-
tion for query optimisation and formal semantics (cf. Negri et al. (1991)). This relational
algebra is closely tied to SQL because most of its operations correspond directly to SQL
keywords. Because of this close connection, it can be difficult to extend relational alge-
bra to more general languages, such as object-relational formalisms and other relational
operations. It is therefore of interest to study possible alternatives to relational algebra.

There are at least three types of algebras which are similar or related to relational
algebra: first, there are relation algebras (i.e. “relation” instead of “relational”). They are
studied in the field of algebraic logic and can be traced back to Peirce and de Morgan via
Tarski (1941) and Schröder (cf. Pratt (1992) for an overview). Second, there are Krasner
algebras, which have been explored with respect to their relationship to Peirce’s algebra
by Hereth Correia & P̈oschel (2004). Third, different variations have been suggested to
Codd’s (1970) original relational algebra in the field of relational databases.

The approach suggested in this paper is to use relation algebra (i.e. a Tarski-Peircean
algebra) instead of relational algebra as the foundation for relational databases. This
relation algebra (RA) is interpreted, first, with respect to Boolean matrices (cf. Kim
(1982)) and, second, with respect to formal contexts in FCA. The goal is to develop an
algebra which is suitable both for relational databases but also for more general object-
relational structures. We call this algebra “object-relational algebra”.

In object-relational algebra, binary relations, which correspond to Boolean matrices
and to (binary) formal contexts in FCA, are used to represent most aspects of a database
schema, such as table JOINs and subtype relations. Because of this, the terms “relation”
and “matrix” may be used interchangeably in this paper. In addition to binary relations,
many-valued matrices, which correspond to many-valued contexts in FCA, are used to
represent the values of relational database tables.

2.1 An interpretation of relation algebra with respect to FCA contexts

A Tarski-Peircean relation algebra (RA) consists of a set with operations for comple-
mentation (−), dual (d), logical OR (∪), composition (◦), null element (nul) and com-
positional one-element (dia). Maddux (1996) provides a detailed overview of these op-
erations and of the axioms and basic theorems of this algebra. Further operations can be
derived from the initial ones, such as logical AND (∩) and the de Morgan complement
of composition (•). The complements ofnul anddia arenul anddia, respectively. It
appears that RA has a large field of applications. Pratt (1993) explains that Chu spaces
can be seen as an interpretation of RA. Maddux derives programming language seman-
tics as an interpretation of RA.

In this paper the RA operations are interpreted with respect to Boolean matrices (in
the sense of Kim (1982)). The RA operations cannot be applied to all Boolean matrices
without further restrictions. For example,∪ and∩ require the matrices to have equal
numbers of columns. In the case of composition (see the example below), the number
of columns of the left matrix must equal the number of rows of the right matrix. Thus
the operations are only partially defined on the set of all Boolean matrices. In matrices,
logical AND and OR are calculated position-wise combining each value of the left

matrix with the one at the same position in the right matrix. Different one-elements are
required for matrices of different sizes. But all one-elements are of the form,diam,n, with
m rows andn columns, 1s on the diagonal and 0s otherwise. The null elements,nulm,n,
are matrices with just 0’s. Two new types of operations are of relevance for Boolean
matrices: first, for matricesI andJ , apposition and subposition consist of adding rows
or columns (written asI|J and I

J). Second, the reduction operationred deletes certain
rows and columns from a matrix.(

a b
c d

)
◦

(
e f
g h

)
=

(
(ae + bg) (af + bh)
(ce + dg) (cf + dh)

)
(

1 1
0 1

)
◦

(
0 1
1 0

)
=

(
1 1
1 0

)
Example 1.Matrix composition.

The interpretation of RA with respect to Boolean matrices can be extended by con-
sidering the matrices to be the cross-tables of formal contexts in the sense of formal
concept analysis (Ganter & Wille, 1999). RA becomes thus an algebra of operations on
FCA contexts. This interpretation requires some further adjustments of the operations.
In the rest of this paper, it is assumed that in each formal context, the setG of formal
objects and the setM of formal attributes are linearly ordered and that if different formal
contexts share a set of objects or attributes then these are in the same linear order. The
RA operations may only be meaningful for formal contexts, if they are applied to for-
mal contexts which share sets of objects and/or attributes. For example, composition of
formal contexts usually assumes that each attribute of the left context equals an object
of the right context.

To distinguish the traditional set-based FCA notations from matrices, type-writer
font is used in this paper for sets and elements while italics are used for matrices and
formal contexts. Unless stated otherwise, for the rest of this paper,K = (G, M, I) de-
notes a formal context withG as set of objects andM as set of attributes.H ⊆ G; N ⊆ M
are subsets andg ∈ G; m ∈ M are elements.

The interpretation of RA on FCA contexts necessitates the introduction of further
operations so that matrices can be converted into sets (of objects or attributes) and vice
versa. For a linearly ordered setT and a subsetS of T, the operationrowT(S) denotes a
row matrix of length|T| which has a 1 in the position of each element ofS that is also
in T and 0’s otherwise. The operationscolT(S) anddiaT(S) are defined accordingly:
colT(S) producing a column matrix anddiaT(S) producing a matrix with 1’s on the
diagonal according to the positions of the elements inS and 0’s otherwise. (BothcolT(S)
androwT(S) can be derived fromdiaT(S) through composition withnul).

With the notations from the previous two paragraphs, sets in a formal context can
be converted into matrices as follows:G := rowG(G), H := rowG(H), g := rowG({g}),
M := colM(M), N := colM(N), m := colM({m}). Underlining is used to indicate that
the matrices correspond to single-element sets and thus contain exactly one 1. For the
remainder of this paper, row or column matrices with a single 1 shall be called “single-
element matrices”. The matrices can be converted back into sets using the following
operations:H = setG(H) andN = setM(N).

The main operations of FCA can now be represented as summarised in table 1. The
plus (+) operator, which is somewhat dual to the prime (′) operator originates from
use in lexical databases (cf. Priss(1998) and Priss & Old (2004)). The operations on
attributesm′, m+, N ′ andN+ are analogous to the ones in the table. It should be noted
that for single-element matrices, the plus and prime operators yield the same result

(i.e., g ◦ I = g ◦ I) because composing withg corresponds to selecting one row from
I, or, in standard FCA terminology, the existence- and all-quantifiers are equivalent for
single-element sets.

standard FCA relation algebra
gIm g ◦ I ◦m = (1)

g′ := {m ∈ M | gIm} g′ = g+ := g ◦ I

H′ := {m ∈ M | ∀g∈G : g ∈ H =⇒ gIm} H ′ := H ◦ I
H+ := {m ∈ M | ∃g∈G : g ∈ H andgIm} H+ := H ◦ I
Table 1.FCA terminology translated into relation algebra

N+ I ◦N ∃m∈M : m ∈ N andgIm at least one, some
G \ N+ I ◦N ¬∃m∈M : m ∈ N andgIm none

N′ I ◦N ¬∃m∈M : m ∈ N and¬(gIm) relates to all
G \ N′ I ◦N ∃m∈M : m ∈ N and¬(gIm) does not relate to all
(M \ N)+ I ◦N ∃m∈M : m 6∈ N andgIm relates to those that are not only

G \ ((M \ N)+) I ◦N ¬∃m∈M : m 6∈ N andgIm relates to those that are only

(M \ N)′ I ◦N ¬∃m∈M : m 6∈ N and¬(gIm) relates to all outside
G \ ((M \ N)′) I ◦N ∃m∈M : m 6∈ N and¬(gIm) does not relate to all outside

Table 2.Eight quantifiers

Operations on FCA contexts have been known for a while (cf. Ganter & Wille
(1999)). But to our knowledge there has not been a significant amount of interest among
FCA researchers in the RA that underlies such operations. The reason for this may be
that in many FCA applications, context operations are not of relevance because they
may not lead to interesting properties of the lattice visualisations. We argue, how-
ever, that in the field of databases, such context operations are of major importance
because they can express quantified relationships between database tables. A many-
valued database table can be interpreted as a binary matrix by replacing every non-
NULL value with 1 and every NULL value with 0. Using such binary matrices, quan-
tified relationships among database tables can be described using RA as summarised
in table 2. The plus and prime operators and their complements roughly correspond to
eight basic natural language quantifiers: “some”, “none”, “all”, “not all”, “only”, “not
only”, “all outwith”, “not all outwith”. This should be of interest to relational databases
because the currently most frequently used database language SQL supports “exists”

as a basic quantifier, but not any of the other seven. Hansen & Hansen (1996, p. 202)
observe that the lack of an “all” quantifier in SQL creates problems for database users.
Another advantage of this approach is that in contrast to SQL which always requires
a three-valued logic because of NULL (cf. Negri et al. (1991)), in this approach many
operations can be performed in the two-valued binary logic.

2.2 Compositional Schemata

One goal for this paper is to construct a complex formal context which summarises all
tables of a given relational database. In order to reach this goal, the notion of a “compo-
sitional schema” is introduced. A compositional schema (as shown in figure 1) consists
of several formal contexts, some of which are composed using any of the quantifiers in
table 2. Such compositional schemata are called “relational context schemata” by Priss
(1998). Similar concatenations using formal contexts are discussed by Ganter & Wille
(1999) and, for example, by Faid et al. (1997).

A B C
B 1 2 3
A 4 5 6
D 7 8 9

A B C
B L

A J J ◦ L

D I I ◦ J I ◦ J ◦ L

Fig. 1.A compositional schema

The numbering of the nine cells as presented in the left hand side of figure 1 shall be
used in the remainder of this paper. The compositional schema in figure 1 is built from
the formal contextsKJ := (A, B, J); KI := (D, A, I) andKL := (B, C, L). Because
KI andKJ share the setA, a contextKI◦J := (D, B, I ◦ J) can be formed. Similarly, a
contextKJ◦L can be formed. Instead of the existence quantifier used in the construction
of the matrices in cells 6, 8 and 9, any of the other seven quantifiers from table 2 can
be used. A further contextKI◦J◦L can be formed in cell 9 to complete the schema. It
should be noted that whileKJ◦L andKI◦J are formed by composing the context to the
left with the one above,KI◦J◦L is formed by composing the context to the left with
the context two steps above (or the context two steps to the left with the one above).
An exception is ifJ is a reflexive, transitive relation, in which caseJ ◦ J = J and
I ◦ J ◦ L = I ◦ J ◦ J ◦ L. The cells 1, 2, 4 can be left empty or cells 2 and 4 can be
filled with an identity relationdia.

Figure 2 shows a compositional schema which can be constructed for any formal
contextK := (G, M, I) whereP(G) andP(M) denote the power set ofG andM, respec-
tively, and∈ and3 denote the “element of” relation:H 3 g andm ∈ N. Again, any of
the 8 quantifiers from table 2 can be used in cells 6 and 8. This compositional schema
summarises information relevant toK. for example, the rows of cell 8 show the chosen
quantifier for every subset ofG. It can be shown that if the set{N, M\N} is chosen instead
of P(M), if I◦ ∈ is chosen for cell 6, and a lattice diagram is constructed for cells 2, 3,
5, 6, all 8 quantifiers according to table 2 can be read from the lattice diagram.

G M P(M)
M dia ∈
G dia I I◦ ∈
P(G) 3 3 ◦I

Fig. 2.A compositional schema for(G, M, I)

Compositional schemata can also be utilised for summarising information about
object-oriented class hierarchies. The relational composition,◦, seems to be a natural
means for expressing inheritance with respect to object-oriented modelling. Figure 3
shows a compositional schema for a class in the sense of object-oriented modelling.
The matrixIinst describes which instances belong to which classes;Isub contains the
class hierarchy;Iattr describes which classes have which attributes. It should be noted
thatIattr only refers to the existence of attributes not their values. For example,Iattr

could specify that a class “employee” contains the attributes “employeeID”, “name”
and “address”. This compositional schema assumes that attributes are named uniquely
across the whole class hierarchy. But this condition can always be fulfilled by initially
prefixing all attributes with the name of the class in which they are defined, and then,
optionally, dropping those prefixes which are not required. The relationIsub is assumed
to be reflexive and transitive, thusIinst ◦ Isub ◦ Iattr = Iinst ◦ Isub ◦ Isub ◦ Iattr.

Classes Classes Attributes
Classes Iattr

Classes Isub Isub ◦ Iattr

Instances Iinst Iinst ◦ Isub Iinst ◦ Isub ◦ Iattr

Fig. 3.A compositional schema for class hierarchies

According to Atkinsion et al. (1989), there are at least four types of inheritance:
substitution, inclusion, constraint and specialisation inheritance. Because various de-
grees of these types can be combined in actual systems, the notion of inheritance can
be quite confusing. Object-relational algebra helps to clarify two of the four types: in-
clusion inheritance is the ordering of classes that emerges fromIinst because it refers
to subset relations among the sets of instances of classes. Specialisation inheritance
is the ordering of classes that emerges fromIattr because it refers to subset relations
among the sets of attributes of classes. It should be noted that the concept lattice of the
formal context based on cells 5, 6, 8 and 9 in figure 3 contains the information about
both inclusion and specialisation inheritance and also aboutIsub by itself in a single
diagram - although in practical applications this diagram can become too large to be
graphically displayed. The other two types of inheritance are based on behaviour (sub-
stitution inheritance) and values (constraint inheritance) and cannot be explained using
just binary matrices. Constraint inheritance requires a many-valued relation instead of
Iinst ◦ Isub ◦ Iattr which contains the actual values of the attributes for each instance.
Such many-valued matrices are further discussed in the next section.

2.3 Relational database tables in a compositional schema

Tables Tables Columns
Tables Iattr

Tables dia Iattr

Keys Iinst Iinst Iinst ◦ Iattr

Fig. 4.A compositional schema for relational databases

The basic compositional schema for relational databases in figure 4 is a simplified
version of the one for classes in figure 3. In relational databases, tables (or entity types)
cannot be subtypes of other tables. For example, it cannot be expressed that a manager
table shall be a subtype of a staff table. Therefore instead of anIsub matrix, cell 5 is
filled by an identity matrixdia. It follows that cell 9 containsIinst ◦ Iattr because
Iinst ◦ Iattr = Iinst ◦ dia ◦ Iattr.

Columns
Tables Key Columns| Other Columns

Tables dia Iattr

Keys Iinst Iinst ◦ Iattr

Fig. 5.A relational database schema

The first row and column in figure 4 do not contain any useful information and can
be omitted. The only reason for presenting the schema in that manner is to demon-
strate that relational databases are a special case of object-relational databases. After
omitting the first row and column, the attributes can be grouped so that all key at-
tributes appear on the left side ofIattr. Figure 5 shows the emerging schema and figure
6 shows an example. Figure 5 (or 6) contains all the information that is contained in
a single relational database. Using the example in figure 6, the employee table (Emp)
can be retrieved as follows:Emp = colTables({Emp}) retrieves the positions of the key
attributes among the formal objects.GEmp = set(redKeys(Emp′)) is the set of for-
mal objects ofEmp; MEmp = set(redColumns(tEmp′)) is the set of formal attributes;
IEmp = redGEmp,MEmp

(Iinst ◦ dia(Emp) ◦ Iattr) is a binary matrix for the relation of
Emp and, finally,CEmp = (GEmp, MEmp, IEmp) represents a formal context forEmp.
The matrixIEmp is binary and contains a 1 for every non-NULL value and 0 for every
NULL value. The actual values of the table can be stored using a mappingmv() from
binary matrices to many-valued matrices. The full database tableEmp thus corresponds
to the many-valued formal context(GEmp, MEmp,mv(IEmp)).

All tables of a relational database can be combined in this manner in one many-
valued matrix (as in figure 6) if three assumptions are made:

– First, if the same name of an attribute is used in different tables it should have a
similar meaning - otherwise the name should be prefixed by the table name.

3

2

3

tProj

tWork

tEmp

Emp Work Proj

e1

e2

e3

e4

p1

p2

p3

eID pname ptime

1

1

1

1

1 1

1

1

1

1

1

1

1

1

4

e1/p1 1

A

B

C

2 wk

2 wk

30 wk

eaddr cost

1

1

100

UK

UK

USA

USA

ename

1

paul

mary

carl

sue

pID

1

1

1

2

3

e1/p2

e1/p3

e2/p1

e3/p2

e3/p3

100

200

400

100

200

1

1

1

1

1

1

2

3

1

2

3

1

1

1

2

3

1

Fig. 6.An example of a relational database schema

– Second, entities are identified by keys.

– Third, the multiple inheritance anomaly (see below) is avoided.

With respect to the second assumption, in many relational databases, tables use
foreign keys as part of composite keys, but the exact same set of key attributes is usually
unique to each table. For such databases, each entity is unique to a single table and the
cells 7, 8, 9 in figure 4 will simply show concatenations of the individual relations.
But in some cases, relational databases contain hidden inheritance structures, which
contain overlapping entities. For example, a database could contain separate tables for
staff and managers but some employees could be both staff and manager. In this case,
the database needs to be carefully designed to avoid a multiple inheritance anomaly.
The schema in figure 5 helps identifying such possible problems. A possible problem
occurs if the same keys are used in different tables and those different tables use the
same attributes. In figure 6, all tables have different keys. Even thougheID andpID are
used in more than one table, they are part of a composite key inWork which is different
from their use inEmpandProj . A multiple inheritance anomaly would occur if a key
is used in different tables relating to the same attribute, but the attribute has different
values in each table. In that case the mappingmv() cannot be defined.

The formal context in figure 5 contains all of the information that is contained in
a power context family (Wille, 2002). This representation is different from Hereth’s
(2002) representation of relational database tables in FCA. Because power context fam-
ilies can represent conceptual graphs, a connection from relational databases to concep-
tual graphs can thus be established. The general idea of object-relational algebra is to
define an algebra that uses compositional schemata as basic elements, that uses opera-
tions from RA and that contains a binary RA as a subalgebra. Due to space limitations,
further details cannot be discussed in this paper.

2.4 Object-relational algebra and SQL

Using the definitions so far, it can now be attempted to translate SQL expressions using
the RA operations described so far. Obviously, this is a complex task, only the begin-
nings of which can be explored in this paper. Two of the basic SQL operations are
projection and selection. Projection corresponds to composition with adia matrix from
the right and selection corresponds to composition with adia matrix from the left. For
example,select ename,eaddr from Emp corresponds toIEmp◦dia(ename∪
eaddr) Selection is usually based on constraints. In object relational algebra, such con-
straints often require the use of many-valued matrices. For each many-valued attribute a
so-called value contextVattr is constructed depending on the type of the attribute. Due
to space limitations the details cannot be discussed in this paper. But the construction
is similar to conceptual scaling (Ganter & Wille, 1999) or relational scaling (Hereth,
2002) in FCA. To provide an example for a select statement:
select ename,eaddr from Emp where ename = ’mary’ and eaddr
= ’UK’ corresponds to
dia((Vename ◦mary) ∩ (Veaddr ◦ UK)) ◦ IEmp ◦ dia(ename ∪ eaddr).

The natural JOIN in relational databases is fairly closely related to relational compo-
sition. This is because a natural JOIN combines two tables based on a shared column. A
difference between an SQL JOIN and◦ is, however, that depending on how the natural
JOIN is formed (e.g. whether subqueries are involved), the query can return any num-
ber of duplicates. This is why such queries are often formulated using “select distinct”
which eliminates the duplicates.

Consider the following example based on figure 6. Three database tables areEmp
(an employee table),Proj (a table for projects) andWork (a table which shows the
relationship of which employee works on which project). In SQL, it is fairly easy to
retrieve all employees which work on a project:
select * from Emp, Work where Emp.eID=Work.eID
It is somewhat more difficult to retrieve all employees which do not work on any project:
select * from Emp where not exists
(select * from Work where Emp.eID=Work.eID)
And it is even more difficult to retrieve all employees who work on all projects:
select * from Emp where not exists
(select * from Proj where not exists
(select * from Work where Emp.eID=Work.eID
and Work.pID = Proj.pID))
A comparison with table 2 shows that the number of negations (relational complements)
in SQL corresponds to the ones in table 2. But in contrast to the relational composition
in the second column from table 2, the SQL statements vary in complexity. Of course,
all of the statements above could be written using 2 subselect statements so that they are
of equal complexity. But in our experience, many average database users would have
extreme difficulty formulating SQL statements of such complexity. Most users would
probably create a view or a temporary table, if they were asked to retrieve employees
on all projects, to avoid using two subselect statements. In object-relational algebra, all
of the statements above would be formed usingdia(IWork ◦ pid) ◦ IEmp and using any
of the quantifiers in the second column of table 2.

3 Normalforms and FCA

3.1 A brief introduction to database normalforms

This section explores a second means of using FCA for modelling an aspect of relational
databases. In relational database design, it is of importance to avoid data redundancy
and anomalies that can occur when data is inserted, deleted or updated (cf. any textbook
on relational databases). The standard solution to such problems is database normalisa-
tion. Several of so called “normalforms” are in use, some of which rely on the notion
of “functional dependency”. Hereth (2002) has shown that a database can be translated
into a power context family and that the functional dependencies of such a database
correspond to FCA implications in a certain formal context. In this paper, FCA is used
as a means for visualising the structures of the different normalforms by representing
functional dependencies as implications in a lattice as Hereth (2002) proposed. It is
not suggested that these visualisations solve any computational problem or create new
means for practical implementations. Instead, the visualisations are meant to serve as
explanatory aids. In our experience, many students tend to experience a great deal of
difficulty in grasping the idea of normalisation. Thus a visual aid should be beneficial.

This section mainly focuses on the Second and Third Normalform (2NF and 3NF)
and on the Boyce Codd Normalform (BCNF), which are all briefly described below. It
should be noted that beyond the textbook versions of the standard normalforms, there
have also been some other normalforms proposed in the literature. The sequence of the
normalforms has emerged due to historical reasons, which explains why BCNF was
inserted between 3NF and 4NF. The normalforms, 2NF, 3NF and BCNF, rely on func-
tional dependencies within a single table. Functional dependencies can either describe
the current state (an attribute is dependent on another one) or a prescriptive state (an
attribute must always depend on another one). Thus it is not always unambiguous as to
what constitute the functional dependencies of a database table. Other types of depen-
dencies utilise JOINs (such as 5NF) and inter-table dependencies. In general, although
current database researchers consider the study of normalforms as completed, it might
still be interesting to revisit this area from an FCA viewpoint, to shed some light on the
differences and relations between the normalforms and to investigate whether there are
any new insights for FCA implications to be drawn from database research.

According to Hansen & Hansen (1996) “a relation is in first normalform (1NF) if
the values in the relation are atomic”. In other words, the values are elements, not sets,
tuples or subtables. Relational databases usually fulfil this normalform automatically
(although modern object-relational databases may not - but that is a different story). A
database table is in 2NF if it is in 1NF and “no non-key attribute is functionally depen-
dent on just a part of the key” (Hansen & Hansen, 1996). A database table is in 3NF if it
is in 2NF and there are no transitive functional dependencies, where “transitivity” refers
to the existence of functional dependencies among non-key attributes. A database table
is in BCNF if it is in 3NF and every non-trivial, left-irreducible functional dependency
has a candidate key as its determinant (where a “trivial” implication is one where the
left-hand side and the right-hand side are identical or where the left-hand side is either
the empty set or the full set of attributes; “determinants” are left-hand sides of func-
tional dependencies and “candidate key” means that these attributes could be used as

an alternative key). Other normalforms, such as 4NF and 5NF, shall be ignored in this
paper.

3.2 FCA visualisations of database normalforms

To use FCA for visualising normalforms, the functional dependencies (including the
dependencies on the key attributes) are considered as an implicational basis of a lattice.
This lattice is called the “FD lattice” of a database table for the remainder of this paper.
It can be used to visually inspect the normalforms. Because by definition all attributes
of a database table must be dependent on the key, the meet of the key attributes must
equal the bottom node of the FD lattice. The easiest normalform to be visualised is
BCNF as described in the following proposition.

Proposition. A database table is in BCNF if
1) all non-trivial implications of its FD lattice have a left-hand side which meets
in the bottom node of the lattice;
2) if the lattice contains any non-key attributes, then no true subset of the key
attributes can meet in the bottom node; and
3) if a set consisting of only non-key attributes meets in the bottom node, then
these must be the only non-key attributes in the lattice.

This proposition is simply a translation of the BCNF definition into FCA termi-
nology: for a determinant to be a candidate key means that the meet of its attributes
equals the bottom node because all keys meet in the bottom node. Item 2) and 3) of the
proposition ensure that the database table is also in 2NF and 3NF, respectively. Because
of item 1), the conditions for 2NF and 3NF are much simpler than in the general case
because only implications based on the bottom node need to be considered. It should be
noted that 2NF and 3NF only restrict implications from key to non-key attributes and
among non-key attributes. Implications from non-key to key attributes are not restricted
in 2NF and 3NF, which is why items 2) and 3) make careful consideration of key and
non-key attributes.

The examples of FD lattices in figure 7 shall help to illustrate some of these points.
In this figure, key attributes are distinguished from other attributes by enclosing their
names in a box. If the lattice contains only two nodes, then either the lattice is isomor-
phic to the one depicted in the far left example in figure 7, or it has only key attributes,
in which case, more than one attribute can be attached to the bottom node. In general
for BCNF lattices of any size, attributes must either be attached to the bottom node or
they must be attached to co-atoms. If any of the co-atomic attributes meet above the
bottom node, then the filter above this node must be a complete Boolean lattice (so that
no subset of the attributes implies the other attributes).

2NF and 3NF are more difficult to visualise. One problem is that there is no FCA
notion of key versus non-key attributes. The lattice on the left side of figure 8 is identical
to the lattice in the middle from an FCA viewpoint. But the left lattice is not in 2NF
because non-key attributeb depends on the partial keyc. The lattice in the middle is in
2NF and 3NF but not in BCNF becausec implies b but c is not a candidate key. The
decomposition of this lattice into two lattices that are in BCNF is shown on the right.

candidate key: d

a b c

c

b b

c

ba a aca b c

BCNF:

candidate key: a,c

a

b

candidate key: a,b

.

d

Fig. 7.FD lattices for relations in BCNF

This decomposition does not preserve the dependencies, because nowa impliesc. It is
a known fact in the literature that BCNF decomposition can sometimes not be achieved
with dependency preservation. It would be an interesting FCA question, whether from
a lattice structural approach it can be determined in which cases BCNF is predictably
dependency preserving and in which cases it is not.

b

not 2NF:

a b

c

3NF/not BCNF:

a b

c

BCNF:

c

a c

Fig. 8.The role of keys and BCNF decomposition

Figure 9 shows some more examples of lattices which are not in BCNF. It should be
pointed out that the sequence of the normalforms (first, second, third, ...) is somewhat
random because of its historical origin. In our experience with tutorials, students tend to
detect and remove transitive dependencies (the main 3NF problem) before they tackle
partial key dependencies (i.e., 2NF problems). Thus 3NF may in some way be more
basic than 2NF.

For determining whether an FD lattice is 2NF or 3NF, all non-trivial implications
other than the ones whose left-hand side meets in the bottom node need to be checked.
Obviously, this can mean that many nodes need to be checked and - from a practical
viewpoint - it may be easier to check the implication list directly without considering
the lattice. But as explained before, the lattice visualisations can still help to convey an
understanding of what the different normalforms mean. For 2NF, the meet of any subset
of key attributes needs to be checked. In the examples in figure 9,a andb imply d in

the middle lattice andc impliesa in the right lattice. These are both violations of 2NF.
For 3NF, it first needs to be determined whether the lattice is in 2NF. In the next step,
only non-key attributes need to be considered. If any implications can be found among
non-key attributes at all, then 3NF is violated.

.

2NF/not 3NF:

b

c

a

d

a b c

d c

a b

not 2NF:not 2NF:

Fig. 9.FD lattices for relations in/not in 2NF and 3NF

4 Conclusion

This paper presents two applications of FCA with respect to relational databases. Object-
relational algebra is suggested as a means for managing database schemata. FCA visu-
alisations of database normalforms can serve as a means for exploring internals of such
normalforms. Both topics still leave many open research questions.

A long-term goal for the research undertaken for this paper is to, ultimately, build
FCA database exploration software, which can be used as a front-end to relational
databases of any content. As far as we know, the only tool which currently exists that can
be used in that manner is Cernato. But Cernato is a commercial tool and not freely avail-
able. Also it focuses on scaling of attributes and does not facilitate joining of database
tables. As Cernato demonstrates, such FCA tools require user interaction and proba-
bly some degree of user training. It is not possible for users to simply “press a button”
and view results. But other database exploration tools as used in Business Intelligence
also require user interaction and training. Thus, in our opinion, FCA stands a chance to
compete with such tools. To minimise the workload of users, an FCA database front-
end would have to be carefully designed. We hope that research as presented in this
paper might highlight some of the structures that could lead the way.

References

1. Atkinson, M.; Bancilhon, F.; DeWitt, D.; Dittrich, K.; Maier, D.; Zdonik, S. (1989).The
Object-Oriented Database System Manifesto.In: Proceedings of the First International Con-
ference on Deductive and Object-Oriented Databases, Kyoto, Japan. p, 223-240.

2. Codd, E. (1970).A relational model for large shared data banks.Communications of the
ACM, 13:6.

3. Faid, M.; Missaoui, R.; Godin, R. (1997). Mining Complex Structures Using Context Con-
catenation in Formal Concept Analysis. In: Mineau, Guy; Fall, Andrew (eds.), Proceedings of
the Second International KRUSE Symposium. p. 45-59.

4. Ganter, B.; Wille, R. (1999).Formal Concept Analysis.Mathematical Foundations. Berlin-
Heidelberg-New York: Springer, Berlin-Heidelberg.

5. Hansen, Gary; Hansen, James (1996).Database Management and Design.Prentice Hall.
6. Hereth, J. (2002).Relational Scaling and Databases.In: Priss; Corbett; Angelova (Eds.) Con-

ceptual Structures: Integration and Interfaces. LNCS 2393, Springer Verlag. p. 62-76.
7. Hereth Correia, J.; P̈oschel, R. (2004).The Power of Peircean Algebraic Logic (PAL).In:

Eklund (Ed.) Concept Lattices. LNCS 2961, Springer Verlag. p. 337-351.
8. Kim, K. H. (1982).Boolean Matrix Theory and Applications.Marcel Dekker Inc.
9. Maddux R. (1996).Relation-algebraic semantics.Theoretical Computer Science, 160, p. 1-

85.
10. Negri, M.; Pelagatti, G.; Sbattella, L. (1991).Formal Semantics of SQL Queries.ACM Trans-

actions on Database Systems, 17, 3. p. 513-534.
11. Pratt, V.R. (1992).Origins of the Calculus of Binary Relations.Proc. IEEE Symp. on Logic

in Computer Science, p. 248-254.
12. Pratt, V.R. (1993).The Second Calculus of Binary Relations.Proc. 18th International Sympo-

sium on Mathematical Foundations of Computer Science, Gdansk, Poland, Springer-Verlag,
p. 142-155.

13. Priss, U. (1998).Relational Concept Analysis: Semantic Structures in Dictionaries and Lex-
ical Databases.(PhD Thesis) Verlag Shaker, Aachen 1998.

14. Priss, U.; Old, L. J. (2004).Modelling Lexical Databases with Formal Concept Analysis.
Journal of Universal Computer Science, Vol 10, 8, 2004, p. 967-984.

15. Tarski, A. (1941).On the calculus of relations.Journal of Symbolic Logic, 6, p. 73-89.
16. Wille, Rudolf (2002).Existential Concept Graphs of Power Context Families.In: Priss; Cor-

bett; Angelova (Eds.) Conceptual Structures: Integration and Interfaces. LNCS 2393, Springer
Verlag, p. 382-395.

