
Relational Concept Analysis:

Semantic Structures in Dictionaries

and Lexical Databases1

Vom Fachbereich
Gesellschafts- und Geschichtswissenschaften

der Technischen Universität Darmstadt

zur Erlangung des Grades eines
Doktors philosophiae

(Dr. phil.)
genehmigte

Dissertation

von
Dipl.-Math. Uta Priß

aus Braunschweig

Referent: Prof. Dr. Rudolf Wille
Koreferenten: Prof. Dr. Rudolf Hoberg

Prof. Dr. Volker Beeh

Tag der Einreichung: 4. November 1996
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Introduction

A starting point for this dissertation was the attempt to find mathematical models for
the semantic relations in lexical databases such as Roget’s International Thesaurus
(RIT, 1962) and WordNet. This lead to a detailed analysis of lexical and conceptual
structures within linguistic data (Chapter 1), to the creation of Relational Concept
Analysis as an extension of Formal Concept Analysis (Chapter 2), and to the for-
mal modeling of semantic relations (Chapter 3). The purpose of this research is to
provide a set of formal representation techniques that allow a structural approach
to knowledge organisation and representation systems. Applications can be found
in computerized systems that customize natural language storage and processing, in
relational databases, semantic networks, conceptual knowledge systems as developed
by cognitive scientists, library classification systems, thesauri, and others. Chapter 4
demonstrates how Relational Concept Analysis interlinks with some other theories
in this area. It further indicates a wide range of applications of Relational Concept
Analysis in addition to the lexical databases for which the theory originally was
designed.

Chapter 1 presents a short introduction to Formal Concept Analysis, an overview
of the linguistic terminology and linguistic or philosophical theories on the subject
of ‘word’, ‘concept’, ‘meaning’, and ‘denotation’. This leads to the definition of ‘dis-
ambiguated words’ which have ‘particular meanings’, are contained or stored in a
lexical structure, and present the basic units for most of the modelings in this pa-
per. The concepts that correspond to a disambiguated word are differentiated into
denotative and connotative word concepts. They always depend on underlying con-
texts which are given in the denotative and connotative structures. This terminology
allows the formalization of several ‘linguistic contexts’ and ‘linguistic lattices’ which
can be applied to a variety of linguistic datasets for a variety of purposes. For exam-
ple, the differences between lexical and conceptual structures can be made visible.
This can be used to compare implicit conceptual structures of several languages or
even improve semi-automatic machine translation systems. Polysemy and synonymy,
which evolve from the interrelationship between lexical and conceptual structures
and depend on the amount of connotative and denotative features, can also be made
visible in graphical representations. The chapter terminates with formalizations of a
traditional dictionary (such as Webster (1981)), a natural language thesaurus (such
as RIT (1962)), and a lexical database (such as WordNet).

Relational Concept Analysis (Chapter 2) enhances the conceptual structures of For-
mal Concept Analysis with additional relations that are defined on the object or
attribute level and generalized to the conceptual level. Preceding and related the-
ories to Relational Concept Analysis can be found in lexical semantics/linguistics
(Cruse, 1986), knowledge representation systems/cognitive science (Woods, 1990),
logical quantifiers/philosophy (Westerstahl, 1989) and power relations/mathematics
(Brink, 1993). An important feature of Relational Concept Analysis is that implicit
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quantifiers, which are in other theories often not fully recognized, are made explicit.
This together with the lattice formalization of Formal Concept Analysis seems to
establish an advantage for Relational Concept Analysis as a tool in knowledge orga-
nization and data structuring. The different aspects of Relational Concept Analysis
are discussed in detail in Chapter 2: the development of bases for concept relations
which allow optimal implementations of relations in lexical databases; the inheritance
structures and other formal properties (such as transitivity) of concept relations;
auto- and polyrelations; graphical representations; and applications to the linguistic
contexts and lattices from Chapter 1 are the major subjects that are discussed.

Chapter 3 concentrates on linguistic aspects of semantic relations. A broad classifica-
tion of semantic relations is developed based on formal characteristics. The semantic
relations, synonymy, hyponymy, hypernymy, cohyponymy, disjointness, meronymy,
contrast (antonymy), sequence, cause, backward presupposition, and entailment are
formally defined. The major example for this chapter is the meronymy relation which
is distinguished from Lesniewski’s mereology (compare Luschei (1962)). The mod-
eling with Relational Concept Analysis facilitates the improvement of a theory of
transitivity for the meronymy relation that was developed by Winston et al. (1987).
Furthermore, a classification of meronymy based on quantifications is developed and
compared to the classifications based on content by other authors (Chaffin & Her-
rmann (1988), Winston et al. (1987), Iris et al. (1988), and Miller et al. (1990)).
The version of WordNet as a relational database which was developed in connec-
tion with this dissertation leads to a further classification based on content which
is also compared to the existing classifications. Relational Concept Analysis can be
utilized to discover irregularities in the implementations of semantic relations in lex-
ical databases. This is demonstrated using examples from WordNet. The contrast
relations (such as antonymy) are shown to be different from meronymy in that they
use only one type of quantification. Finally, verbs and prepositions are interpreted as
semantic relations and it is demonstrated that several types of verb entailment (Fell-
baum, 1990) are based on quantifications of the meronymy and sequence relations.

Chapter 4 provides applications and extensions of Relational Concept Analysis. Some
of the features that Relational Concept Analysis shares with other knowledge repre-
sentation systems, that are improvements compared to other systems, or that are not
as advanced as in other systems are discussed. It is argued that the lexical and con-
ceptual structures of a natural language both form separate systems that interrelate.
A graphical representation technique for semantic and lexical relations in a denota-
tive lattice is developed. Formal composition rules for lexical and conceptual items
are defined and related to each other. In the second section of Chapter 4 Relational
Concept Analysis is revisited within the framework of Relational Algebra (Pratt,
1992). It is proved in this chapter that the quantified relations from Chapter 2 can
be computed as binary matrix multiplications (that is, as a relational product). Thus
the connection to Relational Algebra provides a simple algorithm for a computerized
implementation of Relational Concept Analysis. Unary relations are introduced and
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used to assign additional attributes to a concept lattice. Such additional attributes
can be prototypical or default attributes that are not shared by all objects in the ex-
tent of a concept. Finally, Relational Concept Analysis is compared to other systems
of knowledge representation or data structuring, such as many-valued contexts, the
Entity-Relationship model, terminological logic, and semantic networks.

I wish to thank all those people who helped me during the last three years with com-
ments and discussions about my thesis. Without naming them individually I thank
the members of the AG Begriffsanalyse for the constructive discussions during the
Mittagseminar and for the supportive atmosphere in the department. I especially
thank Prof. Rudolf Wille for his advice and support, for encouraging me to work
with Roget’s International Thesaurus and for enabling me to spend some time at
universities in the United States. I thank Prof. Rudolf Hoberg for accepting my in-
terdisciplinary research. I am further thankful to the Professors Walter and Sally
Sedelow (University of Arkansas at Little Rock) and George Miller (Princeton Uni-
versity) for enabling me to study and work in their departments. Discussions with
Christiane Fellbaum helped in clarifying some aspects of WordNet and hints from
Fritz Lehmann helped in finding some relevant references. And finally I thank John
Old for his valuable comments and for correcting my English.
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1 Formal Description of Linguistic Terms

1.1 Formal Concept Analysis

The increasing need for computerized knowledge storage and processing requires for-
mal representation techniques. In linguistic applications computerized lexical databa-
ses and natural language processing software tools enable a treatment of natural lan-
guage for the purpose of software development and research goals which has been
unimaginable a hundred years ago. The basic condition for all computerized data is
formalization. In this paper a mathematical theory called Formal Concept Analysis,
which has been especially designed (see Wille, (1992) and (1994)) for the preparation
of data in a way that facilitates a critical examination of the data according to the
aims of pragmatic philosophy, is introduced and applied to linguistic data. In for-
malizations, symbolic configurations are assigned meanings that enable substantive
interpretations. Nevertheless the distance between formalization and interpretation
often causes a loss in content. The basic notions of Formal Concept Analysis are a
formalization of ‘concept’ and of conceptual hierarchies. Based on the mathemati-
cal formalization graphical representations, such as concept lattices (see Figure 1.1),
are developed which can serve as a tool for scientific communication. To differentiate
between formalizations and content, in this paper three sub-languages have to be dis-
tinguished: the language of Formal Concept Analysis, the sub-language of scientific
linguistic terminology, and the sub-language of everyday communication. Therefore
attributes, such as ‘formal’, ‘linguistic’, or ‘natural language’ are used throughout
this paper in the cases where ambiguities could occur in order to clarify in which
sub-language the terms are used. ‘Natural language’ is used to refer to the usage of a
term in the natural language, whereas ‘linguistic’ refers to the usage of a term in the
linguistic science. In Formal Concept Analysis verbal forms of objects, attributes, or
concepts (see below) are elements of sets which get a specific meaning when they
are interpreted within the terminology of another sub-language. In the later sections
of this chapter, several classes of formal contexts are defined whose formal objects,
attributes, or concepts have specific interpretations. For example, the formal objects
in one class of formal contexts are interpreted as denotata in a linguistic terminology.
Depending on the class of a formal context the structures of the formal conceptual
hierarchy also have certain interpretations. For example, for some contexts the for-
mal conceptual hierarchy can be interpreted as linguistic hypernymy. It should be
obvious by now, that it is essential to be conscious about which sub-language is used
and which interpretation is valid in which context.

Formal Concept Analysis (Ganter & Wille, 1996) starts with the definition of a formal
contextK as a triple (G, M, I) consisting of two sets G and M and a relation I between
G and M (i.e. I ⊆ G × M). The elements of G and M are called formal objects
(Gegenstände) and formal attributes (Merkmale), respectively. The relationship is
written as gIm or (g, m) ∈ I and is read as ‘the formal object g has the formal
attribute m’. A formal context can be represented by a cross table which has a
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row for each formal object g, a column for each formal attribute m and a cross in
the row of g and the column of m if gIm. The upper half of Figure 1.1 shows an
example of a formal context. It has ‘person’, ‘adult’, and so on as formal objects, and
‘juvenile’, ‘grown-up’, ‘female’, and ‘male’ as formal attributes. All formal contexts in
this paper are finite. That means they have finite sets of formal objects and attributes
because the main application of this paper is linguistic contexts. Linguistic contexts
are defined in this paper as formal contexts whose formal objects and attributes
are elements of linguistic research, such as words, denotata of words, word forms,
semantic components of words, and others. Since the basis for linguistic contexts in
this paper are dictionaries or lexical database, it is assumed that every language at
any time has only a finite number of words, letters, word forms, and so on, therefore
all linguistic contexts are finite.

grown-up

person

female person
male person
child
woman

adult
person

man
girl
boy

malefemalegrown-upjuvenile

male person adultchildfemale person

woman girl boy man

female juvenile male

Figure 1.1: A formal context and the line diagram of its concept lattice

In a context (G, M, I) the set of all common formal attributes of a set A ⊆ G of
formal objects is denoted by ιA := {m ∈ M | gIm for all g ∈ A} and, analogously,
the set of all common formal objects of a set B ⊆ M of formal attributes is εB :=
{g ∈ G | gIm for all m ∈ B}. For example, in the formal context in Figure 1.1,
ι{man} = {grown-up, male} and ε{grown-up} = {adult, woman, man} hold. The
sets ι{man} and ε{grown-up} obviously depend on the formal context because only
those formal attributes or objects can be retrieved that actually exist in the formal
context. A pair (A, B) is said to be a formal concept of the formal context (G, M, I)
if A ⊆ G, B ⊆ M, A = εB, and B = ιA. In this paper formal concepts are denoted
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by c, c1, ci and so on. For a formal concept c := (A, B), A is called the extent
(denoted by Ext(c)) and B is called the intent (denoted by Int(c)) of the formal
concept. In the example of Figure 1.1, ({adult, woman, man}, {grown-up}) is a formal
concept, because ι{adult, woman, man} = {grown-up} and ε{grown-up} = {adult,
woman, man}. The extent of this formal concept is {adult, woman, man}, the intent
is {grown-up}. Within a formal context a formal concept can therefore already be
uniquely described by either its extent or its intent. This is not necessarily true for
natural language concepts, for example, it seems to be impossible to list all attributes
of ‘adult’ which speakers of the English language might intersubjectively assign to
the natural language concept ‘adult’. Similarly it seems to be impossible to list the
class of all objects which might be described by the attribute ‘big’ in some natural
language context.

The set of all formal concepts of (G, M, I) is denoted by B(G, M, I). The most im-
portant structure on B(G, M, I) is given by the formal subconcept-superconcept re-
lation that is defined as follows: the formal concept c1 is a formal subconcept of
the formal concept c2 (denoted by c1 ≤ c2) if Ext(c1) ⊆ Ext(c2), which is equiv-
alent to Int(c2) ⊆ Int(c1); c2 is then a formal superconcept of c1 (denoted by
c1 ≥ c2). For example, ({adult, woman, man}, {grown-up}) as a formal supercon-
cept of ({woman}, {grown-up, female}) has more formal objects but fewer formal
attributes than ({woman}, {grown-up, female}). It follows from this definition that
each formal concept is a formal subconcept of itself in contrast to the natural lan-
guage use of ‘subconcept’ which precludes a concept from being a subconcept of itself.
The relation ‘≤’ is a mathematical order relation called formal conceptual ordering
on B(G, M, I) with which the set of all formal concepts forms a mathematical lat-
tice denoted by B(G, M, I). This means that, for all pairs of concepts, the greatest
common subconcept and the least common superconcept exist.

Graphically, mathematical lattices can be depicted as line diagrams which represent a
formal concept by a small circle. According to the formal conceptual ordering, formal
subconcepts are drawn under their formal superconcepts and connected by a line with
their immediate formal superconcepts. For each formal object g the smallest formal
concept to whose extent g belongs is denoted by γg. And for each formal attribute
m the largest formal concept to whose intent m belongs is denoted by µm. The
concepts γg and µm are called the object concept of g and the attribute concept of m,
respectively. In the line diagram it is not necessary to write the full extent and intent
for each concept, instead the name (verbal form) of each formal object g is written
slightly below the circle of γg and the name of each formal attribute m is written
slightly above the circle of µm. The lower half of Figure 1.1 shows the line diagram
of the concept lattice of the formal context in Figure 1.1. To read the line diagram,
the extent of a formal concept consists of all formal objects which are retrieved
by starting with the formal concept and then collecting all formal objects that are
written at formal subconcepts of that formal concept. Analogously, the intent is
retrieved by collecting all formal attributes that are written at formal superconcepts
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of the formal concept. More details on Formal Concept Analysis can be found in
Ganter & Wille (1996). In contrast to many classification systems that are organized
as trees, lattices in Formal Concept Analysis allow for a formal concept to have
several immediate formal superconcepts. In the lattice in Figure 1.1, for example, a
woman is an adult and a female person at the same time. We consider this feature
to be a major advantage over tree based systems.

For further reference, the mappings which are defined for formal contexts and lattices
are summarized in Definition 1.1. The mappings ι+ and ε+ are added because they are
needed in some applications, for example, in Section 1.11. If several formal contexts
are involved in one application the mappings ι, ε, γ, µ, ι+, ε+ can be indexed, such as
ιI , εI, and so on. If necessary further indexes can be added.

Definition 1.1:
For a formal context K := (G, M, I) with set B(K) of formal concepts the following
mappings are defined2:

• ι : ℘(G) → ℘(M) with ιG1 := {m ∈ M | ∀g∈G1
: gIm} for G1 ⊆ G

• ε : ℘(M) → ℘(G) with εM1 := {g ∈ G | ∀m∈M1
: gIm} for M1 ⊆ M

• γ : G → B(K) with γg := (ει{g}, ι{g})

• µ : M → B(K) with µm := (ε{m}, ιε{m})

• ι+ : ℘(G) → ℘(M) with ι+G1 := {m ∈ M | ∃g∈G1
: gIm} for G1 ⊆ G

• ε+ : ℘(M) → ℘(G) with ε+M1 := {g ∈ G | ∃m∈M1
: gIm} for M1 ⊆ M

• Ext : B(K) → ℘(G) with Ext(c) := {g ∈ G | γg ≤ c}

• Int : B(K) → ℘(M) with Int(c) := {m ∈ M | µm ≥ c}

1.2 The linguistic terminology

Since linguists and philosophers often use terms, such as ‘meaning’, ‘concept’, ‘word’,
‘denotation’ and others in a slightly different way from their colleagues, there is a
need to precisely define these terms for the use of this paper. This section presents the
basic terms of our terminology and introduces an example which is used throughout
this chapter. The next section compares our terminology to the terminology of other
linguists or philosophers. The following sections of this chapter derive a formaliza-
tion of our terminology to facilitate the application of Formal Concept Analysis to
linguistic data. The first question is certainly ”what is a word?” Hofstadter (1996)

2℘ denotes the power set of a set, i.e. ℘(G) := {G1 | G1 ⊆ G}.
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convincingly demonstrates that this question is not easily answered. A survey of ap-
proaches to answer this question can be found in Forsgren (1977). In this paper the
following is defined:

Definition 1.2:
Anything which can appear as an entry of a dictionary, such as single words (‘per-
son’), composite words, or phrases (‘female person’, ‘President of the United States’)
is called ‘word’. A word consists of a word form and a word meaning. The word mean-
ing at a certain time is a cultural unit which contains all intersubjectively associated
aspects of the meaning of the word3, such as denotation, connotation, part of speech,
syntactic rules, conditions of usage, and so on. These aspects are called ‘features’
of the word meaning and cannot be defined in general but are subject to underlying
linguistic theories. Formally, words are denoted by v, v1, vi, and so on, word forms by
form(v), form(v1), form(vi), and so on, and word meanings by mng(v), mng(v1),
mng(vi), and so on.

The following remarks try to clarify this definition: First, the basic application of
the theory of this paper are dictionaries, thesauri, and lexical databases which are
assumed to represent the words synchronically for one certain time period. Pragmatic
aspects are only contained as long as they are part of the word meaning. It would
be interesting to extend our theory to include sentences and their meanings, but this
could not be achieved in this paper. The dictionary that is used as an example in
this paper is Webster’s Third New International Dictionary (W3), the thesaurus is
Roget’s International Thesaurus (RIT), and the lexical database is WordNet.

Second, what we call ‘word’ is often called ‘lexeme’ (Lyons, 1977), ‘lexical unit’
(Cruse, 1986) or ‘lexical item’. But since linguistic terms are often used differently
among the authors (for example, the French structuralists use ‘lexeme’ for the mor-
pheme which contains the lexical meaning of a word (Wiegand & Wolski, 1980)) and
since compound forms, such as ‘meaning of a lexical unit’ are not as easy to construct
as ‘word meaning’, we prefer ‘word’.

Third, the word form in this paper is always represented in its ‘citation form’ (Lyons,
1977). It could be interpreted as a paradigm of its tokens (Lutzeier, 1982), but these
aspects shall be ignored in this paper.

Fourth, word meanings are considered in this paper to be atomic cultural units. They
resemble Eco’s (1991) definition of a significat as a cultural unit which is a semantic
unit within a system and is denoted by the significant (word). More details on Eco’s
terminology can be found in the next section. In our definition, the different aspects

3This is not a circular definition because ‘word meaning’ is used as a linguistic term which is
defined by this statement and which is used according to this definition in the rest of this paper
whereas ‘meaning of the word’ refers to a not defined notion which is commonly used in the natural
language.
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of the meaning, such as connotations, denotations, and so on are features of the word
meaning. Which features a certain meaning has is not decided in general indepen-
dently of a certain philosophy or context. For applications, formal contexts (so-called
connotative contexts) are constructed which have word meanings as formal objects
and features of word meanings, such as ‘denotes a living being’, ‘has a derogatory
connotation’, or ‘is an adjective’ as formal attributes. These formal contexts can then
be used to compare different word meanings according to the features which have
been selected for that specific formal context. It seems to be difficult (or impossible)
to derive any general statements about the features of word meanings, independent
of specific formal contexts, which would be agreed upon by a majority of linguists or
philosophers, therefore we choose this approach to represent the word meaning as an
atomic constant which has features according to certain contexts.

The following example of ‘morning star’ and ‘evening star’, which is selected because
of Frege’s (1892) famous example, is used throughout this chapter and is based on
W3:

Evening star 1a : a bright planet (as Venus) seen in the western sky after
sunset; b: any planet that rises before midnight; c: any of the five planets
that may be seen with the naked eye at sunset; 2: a small bulbous plant
of Texas (Cooperia drummondii) with grass-like leaves and star-shaped
white flowers;

Morning star 1a: a bright planet (as Venus) seen in the eastern sky be-
fore sunrise; b: any of the five planets that may be seen with the naked
eye if in the sky at sunrise (Venus, Jupiter, Mars, Mercury, and Saturn
may be morning stars); c: a planet that sets after midnight; 2: a weapon
consisting of a heavy ball set with spikes and either attached to a staff
or suspended from one by a chain - called also holy water sprinkler; 3: an
annual California herb with showy yellow flowers;

A word meaning can often be divided into more specific word meanings, for example,
the word meaning 1 (‘celestial body’) of the word ‘morning star’ can be divided into
the more specific meanings ‘a bright planet (as Venus)’, ‘any of the five planets ...’
and ‘a planet that sets after midnight’. The other two meanings ‘medieval weapon’
and ‘California herb’ which cannot be further divided are not homographs (which are
considered to be different words), but metaphorical uses of ‘morning star’. The most
specific meanings given in a dictionary indicate that the word is disambiguated and
therefore has a particular meaning. Similarly, each location of a word in a thesaurus
hierarchy usually denotes one particular meaning of the word and therefore disam-
biguates it. The distinction between words and disambiguated words is not the same
as the distinction between ‘virtual’ and ‘actual’ or ‘type’ and ‘token’ (for example
in Lincke et al. (1994)). Words are virtual and types. Disambiguated words are, so
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to say, virtual versions of tokens. Consider an example: the type ‘dog’ has six mean-
ings in WordNet (they are called ‘senses’ in WordNet) of which the disambiguated
word ‘dog 1’ means the member of the genus Canis. A token of ‘dog 1’ occurs, for
example, in the sentence ‘Fido is the dog that ate the sausage’ which can under some
circumstances denote a real world dog ‘Fido’. On the other hand in ‘Fido is a dog’,
the token of ‘dog’ denotes not only Fido but a concept or a class of dogs. Therefore
the denotata of a token (Lyons (1977) calls this ‘referent’) are normally obvious from
the natural language context, such as ‘Fido’ or the class of dogs. It is usually agreed
upon (Lincke et al., 1994) that the type ‘dog’ has no denotata because as long as it
is not disambiguated the denotata could be dogs, villains, or devices. Disambiguated
words which are, so to say, in-between types and tokens have denotata (Lyons (1977)
calls them ‘denotatum’). The following definition specifies disambiguated words and
their denotata based on the general approach of this paper to consider dictionaries
(or lexical databases or thesauri) as a basis.

Definition 1.3:
Particular meanings of words are indicated by sense numbers in a dictionary or lexi-
cal database or by the location in the hierarchy of a thesaurus. A disambiguated word
consists of the word form of the word concatenated with a sense number and a partic-
ular meaning of the word which native speakers of a language recognize after reading
its definition in a dictionary or after seeing its synonyms in a thesaurus. A denota-
tum of a disambiguated word is an instance or item which the disambiguated word can
denote according to its particular meaning and to the intersubjectively agreed upon
rules of the language. Formally, disambiguated words are denoted by w, w1, wi, and
so on, forms of disambiguated words by form(w), form(w1), form(wi), and so on,
and particular meanings by mng(w), mng(w1), mng(wi), and so on.

Several problems arise from such a definition. First, similarly to what has been said
about word meanings, particular meanings are considered in this paper to be atomic
units. Within formal contexts the particular meanings are assigned certain features
that therefore depend on the formal context. It is not defined in general in this paper
how the particular meanings constitute the word meaning because that also depends
on underlying linguistic theories and can be modeled in a formal context.

Second, it is assumed that the reader of the dictionary or thesaurus lives in the same
time period and social environment which is represented in the dictionary; that he or
she fully understands what is written in the dictionary and the dictionary does not
contradict the general intersubjective knowledge of the speakers of that language.

Third, the questions of how meanings are represented in the mental lexicon of native
speakers of a language, and how the meanings recognized by individual speakers as
part of their idiolects differ from the meanings as part of the intersubjective language
system, are not discussed in this paper. It is simply assumed that different native
speakers of a language recognize approximately the same particular meaning after
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reading a dictionary definition so that it is possible to treat the particular meaning of
a disambiguated word as a constant of a certain natural language at a specific time.

Fourth, the ontological question in what way denotata ‘exist’ is not important for
this paper because we attempt to separate the formalization of linguistic terms from
philosophical viewpoints. The only application where denotata are used in this paper
are so-called denotative contexts (see below) which consist of specific sets of deno-
tata and specific sets of attributes of denotata. The person who designs a denotative
context has to decide whether or not items which are questionable, such as unicorns,
are included in the set of denotata for that specific denotative context. A denotative
context of a whole language would probably be too large to ever be constructed.
Instead, denotative contexts of partial sets of the vocabulary of a natural language
should be considered. Our suggestion for denotative contexts derived from a dictio-
nary is to use prototypical instances or items for the denotata of words which do
not denote individuals, such as proper names. The discussion about the existence of
denotata inside of possible worlds or the external world does not have to be taken
into consideration because even if some denotata of a disambiguated word do not
have a physical existence they still have attributes which a native speaker of a lan-
guage knows if he or she knows the meaning of the disambiguated word. And for the
development of formal contexts only a set of denotata, a set of attributes of denotata
and their relation are needed. For example, the denotative attributes of unicorns are
easy to define inside the intersubjective knowledge of English speakers. For English
speakers, unicorns look like white horses and have a long horn growing from their
foreheads (according to WordNet). They further have the denotative attribute ‘exists
only in imagination’.

Fifth, denotata are always thought to be items or instances. For example, denotata
of ‘cow 1’ (according to WordNet) can be all cows to which someone can refer to as
‘cow’. This is in contrast to Lyons (1977) who defines the denotatum (singular) of
‘cow’ as the class of all cows. Denotata of a verb are usually instances, for example,
denotata of ‘eat 1’ (WordNet) are instances where it can be said that ‘someone
eats something’. Denotata of ‘courage’ are instances which can be called ‘courage’.
As said before for a denotative context some specific instances and items, such as
the ‘courage of David fighting Goliath’ or ‘the cow Bluebell’ or some prototypical
instances or items have to be selected.

Sixth, anaphora is ignored in this paper because it is a phenomenon of the word
tokens and not of the disambiguated words. Saying ‘dog’ instead of ‘Fido’ means
using a hypernym of ‘Fido’ instead of ‘Fido’. ‘Dog’ is a synonym of ‘Fido’ in this
sentence, but ‘dog’ is not defined as a synonym of ‘Fido’ in a thesaurus and ‘Fido’
is not a particular meaning of ‘dog’ in a dictionary. Pronouns and prepositions can
denote a variety of denotata, for example, every human being who can speak English
can say ‘I’ for her- or himself. This may be a reason why they are not included
in WordNet. The denotata of some other classes of words are difficult to describe,
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for example, what are denotata of gradable adjectives and adverbs? These shall be
ignored in this paper.

1.3 Linguistic and philosophical theories on some aspects of

meaning

By defining word meaning and particular meaning as atomic constants of natural
languages according to a dictionary or lexical database, we tried not to include the
complete discussion of meaning among linguists and philosophers in this paper. This
section gives a short summary on the treatment of some aspects of meaning – which
are needed for the modeling in this paper, such as denotation – among different au-
thors and compares their terminology to our terminology. A more detailed survey on
the treatment of reference and meaning among philosophers including Wittgenstein,
Frege, Austin, Searle, Grice, and Quine can be found in the philosophical part of
Steinberg & Jakobovits (1971). Two uses of ‘denotation’ in the literature have to be
distinguished. First, ‘denotation’ is used in contrast to ‘connotation’ in the mean-
ing of ‘what the word denotes’ versus ‘what is intersubjectively associated with the
word or the word meaning’. Second, ‘denotatum’ is used in contrast to ‘designatum’
or ‘significatum’ (Morris, 1946) to distinguish between what the word denotes and
the characteristics of what the word denotes. This is also called ‘extension’ and ‘in-
tension’, ‘denotation’ and ‘connotation’ (J. S. Mills according to Lyons (1977)), or
‘Bedeutung’ (‘meaning’) and ‘Sinn’ (‘sense’) (Frege, 1892). For example, J. S. Mills
(1843) is quoted by Lyons (1977) with ‘The word white denotes all white things, ...,
connotes the attribute whiteness’. Frege (1892) invented his (now famous) example of
‘morning star’ and ‘evening star’ which have the same Bedeutung but different Sinn.
Furthermore, the intension is sometimes called ‘reference’ (Ullmann, 1957) as the
‘information which the speaker transmits to the hearer’. Some linguists or philoso-
phers (e.g. Saussure (1916) and Eco (1991)) completely exclude the ‘external world’
because for them language is a system which cannot denote anything outside of itself.
For other linguists or philosophers (e.g. Frege) denotation refers to something outside
of the language system.

Lyons (1977) distinguishes between the denotation of a token and of a disambiguated
word: Reference is the relation between an expression (a series of word tokens uttered
by a speaker in a context or written in a text) and a referent that is established by a
speaker in a specific context. On the other hand he defines denotation as the relation
(independent of any context) between a lexeme (in our terminology: a disambiguated
word) and a denotatum which is a class of objects, properties, and so on. For ex-
ample, the denotatum of ‘dog’ is the class of ‘dogs’ and the denotatum of ‘canine’
is the property of being a dog whereas in ‘Fido is the dog that ate the sausage’,
‘Fido’ is the referent of ‘dog’. In our terminology Lyons’ referents are denotata. His
denotatum which he defines as a class of denotata can be modeled according to our
theory as the set of all denotata of a disambiguated word in a certain formal context.
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Talking about classes of denotata without the restriction to a context (which some
linguists do) seems to be not very precise. A different approach is taken by Putnam
(1975) and further developed by Lutzeier (1981, see below) who define prototypes
and stereotypes (which are lists of prototypical attributes) instead of extension and
intension. That means that they exclude reference to items outside of the language
system because prototypes and stereotypes are meant to be mental schemas. Further-
more they avoid talking about classes because each disambiguated word corresponds
to one stereotype and has only a few prototypes to which it refers.

denotatum

object interpretant

representamen

significatum

Figure 1.2.a: Peirce’s and Morris’ conceptual triangle

The relation between a word form and a word meaning has been characterized by
Saussure who uses ‘signifié’ or ‘concept’ for the meaning of a word and ‘signifiant’
or ‘image acoustique’ for the word form. For him words are part of the language
system and therefore word meanings are constituted by the opposition of a word
to other words inside the system. Peirce (according to Nöth (1987)) invented his
‘semiotic triangle’ (see Figure 1.2.a) consisting of a representamen which resembles
Saussure’s ‘signifiant’, a reference object, and an interpretant. The reference objects
can be classified into immediate objects, which depend on the semiotic process and are
therefore not outside of the sign system, and dynamic objects, which are independent
of the semiotic process and therefore reference objects outside of the sign system.
The interpretant of a sign is the effect of the sign in the mind of an interpreter
and can be a representamen itself which leads to a theoretically indefinite chain of
signs (see Eco’s interpretation of Peirce’s interpretant below). Peirce originated the
distinction between ‘type’ and ‘token’ as part of his classification of signs. Morris
(1946) adapts Peirce’s triangle under a behaviouristic viewpoint. Peirce’s ‘object’
is split into ‘significatum’ (also called ‘designatum’) and ‘denotatum’ similarly to
‘intension’ and ‘extension’. Nevertheless Morris defines a designatum as a class of
denotata (compare Lyons’ denotatum) and as the characteristics of the denotata so
that his designatum actually includes intension and extension. An interpretant is
according to his theory an ‘interpreter with a disposition to respond’ which shows
his behaviouristic interpretation of Peirce’s philosophical term. From his sign triangle
he develops the distinction between the three disciplines: syntax, semantics, and
pragmatics. His classification of signs includes ‘unambiguous signs’ (disambiguated
words in our terminology). Ogden & Richards (1923) changed Peirce’s triangle to
referent, reference, and symbol which has later often been changed to significat,
meaning, and significant. While ‘symbol’ and ‘significant’ mean approximately the
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same as Peirce’s ‘representamen’, their ‘referent’ and ‘reference’ resemble Morris’
‘denotatum’ and ‘designatum’, which means that they split Peirce’s ‘object’ but omit
his ‘interpretant’.

verbal form

predication
referent

designationdenotation

characteristics

Figure 1.2.b: Dahlberg’s conceptual triangle

particular meaning
disambiguated word

connotationdenotation

lexical database

connotative
word concept

denotative
word concept

connotative
context

denotative
context

Figure 1.2.c: The word triangle developed in this paper

Dahlberg’s (1994) theory concentrates on concepts and ignores problems and features
of lexicalizations by ideally considering formal codes as verbal forms of concepts, in-
stead of using natural language words. Her triangle which she uses to define a concept
consists of a referent, characteristics, and a verbal form (see Figure 1.2.b). Her ‘ref-
erent’ resembles a denotatum in Lyons’ terminology, that means that for example,
the concept ‘cow’ denotes one referent and not a class or set. Her ‘characteristics’
have features of being a concept themselves. In our theory (see Figure 1.2.c) the
word triangle consists of disambiguated words or particular meanings (which are in
one-to-one correspondence to each other) as parts of a lexical database and connota-
tive and denotative concepts4 as parts of connotative and denotative contexts. This
approach emphasizes that linguistic analyses are based on underlying theories or
intentions therefore all statements about the features of disambiguated words or par-
ticular meanings are only achieved within formal contexts. Furthermore statements
about disambiguated words can only be produced within the framework of a lexical
database. We think that the confusion about whether denotata are outside or inside of
the language system can be solved by specifying the attributes of denotative contexts
in a corresponding manner. Instead of two terms for extension and intension we dis-
tinguish four terms, the extent and intent of denotative concepts and the extent and
intent of connotative concepts. For example, connotative concepts replace Saussure’s
(1916) ‘concepts’. Mills’ ‘denotation’ and ‘connotation’ can be modeled as extent

4Connotative and denotative concepts, contexts, and structures are defined in more detail in the
next sections.
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and intent of a denotative concept. Frege’s ‘Bedeutung’ corresponds to the extent of
a denotative concept, whereas his ‘Sinn’ corresponds to the intent of a connotative
concept. The extents and intents of denotative concepts replace Morris’ ‘denotatum’
and ‘significatum’. Connotative concepts replace Dahlberg’s ‘characteristics’ which
can be concepts themselves according to her theory.

In the rest of this section, some aspects of the terminology of Eco (1991) and Lutzeier
(1981) that are relevant for our modeling are explained and compared to our terminol-
ogy. Lutzeier defines the meaning of a word for a speaker of a language as a structure
of stereotypes which the speaker associates with the word. Having a certain inten-
tion the word evokes a certain stereotype in the mental lexicon of the speaker (this
corresponds to a particular meaning in our terminology). In a certain context and
having that intention the speaker refers to a normal or prototypical member of the
word (the denotatum in our terminology) called referent. The meaning of a word
(independent of a speaker) is defined as a structure of stereotypes which is intersub-
jectively accepted among the speakers of the language. He adds that these stereotypes
are usually formed by a subgroup of speakers who are experts in the relevant subject
area of the word. If the meaning is considered independently of a speaker he calls the
set of referents (normal or prototypical members of the word) extension. Although
we in general agree with Lutzeier’s modeling, we think that ‘particular meaning’ is a
better term for the purpose of this paper than ‘stereotype’ because ‘stereotype’ has
some negative connotations of being the prejudiced opinion about something and it
is not clear if ‘stereotype’ includes all aspects of the meaning of a word or if it is
mainly restricted to the prototypical attributes of the denotata.

Eco (1991) considers referents (objects of an external world) as not being part of
semiotics and irrelevant for the meaning of a significant (which corresponds to a dis-
ambiguated word in our terminology). A significant denotes a significat (particular
meaning in our terminology) which is a cultural, semantic unit within a system. Each
significat corresponds to exactly one significant and vice versa. The more difficult
term is Peirce’s ‘interpretant’ which Eco defines as the as a cultural unit interpreted
meaning of a significant which is represented by another significant to show its inde-
pendence as a cultural unit from the first significant. In our terminology, a particular
meaning does always depend on the disambiguated form. For example, the reason
that ‘morning star’ and ‘evening star’ have different meanings depends on the fact
that there are already words ‘morning’ and ‘evening’ in the English language which
have meanings themselves and that there is a relation between ‘morning star’ and
‘morning’ because the word ‘morning’ is a part of the compound word ‘morning star’.
The meaning of ‘morning star’ depends therefore (for this example) on the relation of
‘morning star’ to another disambiguated word of the English language. However the
meaning of ‘morning star’ cannot be represented as a function of ‘morning’ and ‘star’.
Eco states that there is something (the interpretant) which is as a cultural unit inde-
pendent from a specific significant and therefore facilitates a definition of synonymy.
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In our theory this resembles the definition of connotative concepts. While partic-
ular meanings are in one-to-one correspondence to words and therefore can never
be synonymous to each other, connotative concepts depend on the relation between
particular meanings and attributes. Hence two disambiguated words can have the
same connotative concept. In Eco’s theory, denotation which is not defined for word
tokens, but for lexemes (lexical entries, disambiguated words in our terminology), is
the semantic valence or position of the lexeme in a semantic field. This definition
resembles Saussure’s definition of ‘meaning’ or Lyons (1977) definition of the ‘sense
of a word’ as the place of the word in a system. In our theory it is the place of a
particular meaning in a denotative or connotative lattice. Eco defines connotation as
the intersubjectively agreed upon union of all cultural units which can be related to
the intensional definition of the significant. This corresponds in our terminology to
the connotative attributes which a particular meaning can have within a connotative
context.

1.4 Denotative contexts and structures

In the following, denotative knowledge and lexical knowledge, which is for this paper
contained in a lexical database, dictionary, or thesaurus, are distinguished. This dis-
tinction is essential, for example, for the modeling of semantic relations in chapter
2. The denotative knowledge is the common sense or the scientific knowledge of a
special social group that is implicitly contained in a reference source, such as a dic-
tionary, encyclopedia, or lexical database. For the purpose of this paper it is formally
represented as a relational structure called denotative structure (see below) which
consists of a formal context called denotative context and some additional sets and
relations. First, the denotative context and lattice are defined:

Definition 1.4:
A denotative context KD := (D, AD, ID) is defined as a formal context whose formal
objects are denotata and whose formal attributes are attributes of the denotata. The
set of denotata is denoted by D, the set of attributes of the denotata by AD, and a
relation that assigns attributes to denotata by ID. The concept lattice B(KD) of a
denotative context KD is called denotative lattice.

Denotative knowledge does not consist of the words and their relations, but it con-
tains all the information about a subject area which is intersubjectively known by a
certain social group and does not depend on the verbal representation. Denotative
contexts are not thought to be independent from languages (on the contrary, English
and Japanese denotative contexts, for example, can be very different), but to be
abstracted from connotations or associations which entirely depend on the specific
verbal representation or the social context and not on the objects themselves. Denota-
tive and lexical structures are linked by the denotative concepts, which are always part
of a denotative lattice. If they are also part of a lexical structure, which means they
are lexicalized, they are called denotative word concepts. (Obviously, some denotative
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concepts, such as lexical gaps (see Section 1.9), are non-lexicalized.) It is probably
not possible to directly construct denotative contexts for a natural language, instead
the denotative word concepts have to be selected from a lexical database. From these
denotative word concepts and their relations an underlying denotative context can
be constructed. In many other applications of Formal Concept Analysis the formal
objects can be interpreted as denotata. For example, in a formal context of a library
classification system the formal objects might be books (or their contents) which are
items to which the titles of the books refer. If their formal attributes entirely depend
on the books and not on associations of the titles of the books, such a formal context
is a denotative context. For applications to lexical databases, prototypical instances
or items are often chosen as denotata.
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Figure 1.3.a: A denotative context for ‘morning star’ and ‘evening star’
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Figure 1.3.b: A line diagram of a denotative lattice for ‘morning star’

20



Figures 1.3.a and 1.3.b show an example of a denotative context and a line diagram
of its concept lattice. The denotative knowledge is derived from the definitions of
‘morning star’ and ‘evening star’ in W3 and some general background knowledge
about planets. The disambiguated words that are notated inside of circles next to
the concepts (which are therefore denotative word concepts) are taken from W3. The
attributes ‘seen after sunset’, ‘seen before sunrise’, and ‘one of the five planets’ are
directly taken from the defining glosses in W3. Since the planets, ‘Venus’, ‘Jupiter’,
and so on, are usually considered to be different items (their names are not synonyms
describing the same item) their diameters are chosen as differentiating attributes. The
knowledge about the diameters is not contained in W3. Other attributes, such as ‘has
two moons’ are not chosen in this case because usually ‘planet with two moons’ is
not a denotative word concept in the English language. To represent the implicit de-
notative structures in a dictionary that directly depend on the disambiguated words
it seems to be a good approach not to add too many attributes which lead to non-
lexicalized concepts. Obviously, the selection of attributes depends on the purpose
of the formal context and lattice. The formal objects, ‘Venus’, ‘Jupiter’, and so on,
are denotata of the words ‘Venus’, ‘Jupiter’, and so on. The other formal objects,
‘prototypical morning star’ and ‘prototypical evening star’, are prototypical denotata
of the words ‘morning star’ and ‘evening star’. Since W3 distinguishes between the
particular meanings ‘1b’ and ‘1c’ it is likely to assume that a prototypical morning
star does not have to be a prototypical evening star, hence the addition of the proto-
typical denotata as formal objects. The attributes, ‘attribute 1’ and ‘attribute 2’, are
prototypical attributes to differentiate between a prototypical morning and evening
star which are not further specified.

The disambiguated words that are notated in the circles next to the concepts are
not part of the denotative context. To include them and some other relations into
the formalization a denotative structure is defined as an extension of a denotative
context.

Definition 1.5:
A denotative structure is a relational structure

SD := (D, AD, C, W, C(W ); ID, dnt,RD,RAD
,RC)

with the following conditions:
1) KD := (D, AD, ID) is a denotative context and C is its set of formal concepts, i.e.
C := B(D, AD, ID). The formal concepts in C are called denotative concepts. The
mappings ι, ε, γ, µ, and so on are defined according to Definition 1.1.
2) W can be empty. The mapping dnt : W → C is defined and C(W ) := {c ∈
C | ∃w∈W : c = dnt(w)}. The formal concepts in C(W ) are called denotative word
concepts.
3)RD,RAD

, andRC are families of relations:RD := (RDj)j∈JD
is a family of relations

RDj ⊆ D ×D; RAD
:= (RAj)j∈JA

is a family of relations RAj ⊆ AD × AD; and
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RC := (RCj)j∈JC
is a family of relations RCj ⊆ C × C. Relations of the families RD

and RAD
and the relation ID are called denotative relations. Relations of the family

RC are called semantic relations. RD,RAD
, and RC can be empty.

If no ambiguities can occur some of the indices, such as the D in AD, can be omitted.
On the other hand, if ambiguities can occur, indices, such as ID can be added to ι,
ε, and so on. In the case of several denotative structures, all elements can be labeled
with the name of the denotative structure, such as CS, DS , and AS

D. More details
about the families of relations in 3) are presented in Section 1.7. The most impor-
tant feature of denotative contexts is the fact that some concepts may be denoted
by disambiguated words w ∈ W , such as the words inside of the circles in Figure
1.3.b. Therefore denotative word concepts can be distinguished from non-lexicalized
denotative concepts. The disambiguated words which denote the denotative word
concepts provide a further tool of naming concepts: denotative word concepts can
either be described by their extents and intents or by the disambiguated words which
denote them. A main issue of Section 2.8 is to investigate how some of the information
of a denotative lattice is already contained in the subset of denotative word concepts.
This is essential because a denotative context of a natural language can be derived
from the disambiguated words of a lexical database and the question arises how the
relations and structures among the words codify the relations and structures among
their denotata.

Figure 1.4 shows a diagram of the sets, relations, and mappings of a denotative
structure and of a connotative structure and a lexical structure which are defined in
the next section. A short remark on the notation: a relation is represented in Figure
1.4 by a line without arrow which is labeled by the name of the relation family.
Mappings are represented as lines with arrows. Except for the mappings that are
denoted by small Greek characters (which are standard names in Formal Concept
Analysis) mappings are denoted by three or four letter acronyms. They start with a
small letter if the arrow in Figure 1.4 points to the set that they map into. They start
with a capital letter if they map into the power set of the set to which the arrow
in Figure 1.4 points. Therefore M : X → Y in Figure 1.4 means M(X) ⊆ ℘(Y ).
Bijections are denoted by boldface lines with two arrowheads.

For some applications it is possible that, for example, a set of denotata and an
ordering on the sets of the denotata but no attributes are given. The modeling of
WordNet (see Section 1.12) presents such a case. It is then possible to interpret the
sets of the denotata as extents of denotative concepts and create a denotative context
and lattice from them. This method of constructing denotative contexts is equivalent
to the usual method in the following sense: Formal contexts are called equivalent to
each other if their reduced versions are isomorphic (Ganter & Wille, 1996). Equivalent
versions of (D, AD, ID) are (D, C, I

γ
D), (C, C,≤), and (C, AD, I

µ
D)5. If, for example,

5Proof: The first two are equivalent according to the following constructions: starting with KD
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(C, C,≤) is given, denotata and their attributes which are implicitly contained in the
concepts can be explicitly named by using verbal phrases, for example, the denotative
concept c with verbal form ‘person’ leads to the set of denotata ‘prototypical persons’
and to the set of attributes ‘prototypical attributes of a person’.

1.5 Connotative and lexical structures

Connotative contexts and structures are defined analogously to denotative contexts
and structures. The main difference (condition 2 in Definition 1.7) is that particular
meanings are assumed to correspond to disambiguated words: each disambiguated
word has a unique particular meaning because, otherwise, if two disambiguated words
had exactly the same meaning one word would be redundant in the language system.
On the other hand, each particular meaning is expressed by one word, because it is
questionable what meanings that are not expressible by words should be. Particular
meanings cannot be denotata because particular meanings contain all connotations
of the disambiguated word.

Definition 1.6:
A connotative context KK := (M(W ), AK, IK) is defined as a formal context whose
formal objects are particular meanings and whose formal attributes are features of
the particular meanings. The set of particular meanings is denoted by M(W ), the
set of features of the particular meanings by AK , and a relation that assigns features
to particular meanings by IK . The concept lattice B(KK) of a connotative context
KK is called connotative lattice.

Definition 1.7:
A connotative structure is a relational structure

SK := (M(W ), AK, K, W, K(W ); IK, cnt,RM(W ),RAK
)

with the following conditions:
1) KK := (M(W ), AK, IK) is a connotative context and K is its set of formal con-
cepts, i.e. K := B(M(W ), AK , IK). The formal concepts in K are called connotative
concepts. The mappings ι, ε, γ, µ, and so on are defined according to Definition 1.1.
2) A bijection holds between M(W ) and W . The mapping cnt : W → K is defined
as cnt(w) := γmng(w) and K(W ) := {k ∈ K | ∃w∈W : k = cnt(w)}. The formal
concepts in K(W ) are called connotative word concepts.
3) RM(W ) and RAK

are families of relations: RM(W ) := (RMj)j∈JM
is a family of

relations RMj ⊆ M(W ) × M(W ) and RAK
:= (RAj)j∈JA

is a family of relations
RAj ⊆ AK × AK. Relations of the family RM(W ) are usually similarity relations.
RM(W ) and RAK

can be empty.

and C := B(KD) the relation is defined as dI
γ
Dc :⇐⇒ γd ≤ c (in KD). Starting with (D, C, I

γ
D) for

each meet irreducible concept ci ∈ C an additional attribute ai is defined such that µai = ci (in
(D, C, I

γ
D)). Then dIDai :⇐⇒ dI

γ
Dai. The other equivalences can be similarly shown.
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A connotative word concept of a disambiguated word is therefore defined as the small-
est connotative concept which contains the particular meaning of a disambiguated
word in its extent. An equivalent version of a connotative context (M(W ), AK, IK)
is a context (W, AK , IK) because there is a one-to-one correspondence between dis-
ambiguated words and their particular meanings and therefore a connotative context
can also be modeled using the words as formal objects. The intent of a connotative
concept depends on the attributes which it has in a connotative context. These at-
tributes are the features (see Definition 1.3) that a particular meaning has according
to the viewpoint of a connotative context. Connotative concepts often represent what
linguists (for example Saussure (1916)) mean when they say the meaning of a word
is a concept. It can be said that Lyons’ (1977) ‘sense’ of a word which is the place of
the word in the language system is described by its place in a connotative lattice. We
think that a particular meaning is in the extent of connotative concepts, but should
not be modeled as a formal concept itself because the formal objects and attributes
of a meaning would be difficult to define. On the other hand, connotative concepts
cannot be modeled independent of particular meanings (or disambiguated words)
because the connotations depend on the word (or word form) and on its relation to
other words. ‘Morning star’ has a different connotation from ‘evening star’ because
there are words ‘morning’ and ‘evening’ in the English language which have meanings
themselves. The relation between ‘morning star’ and ‘morning’, ‘evening star’ and
‘evening’, and so on is an example for a similarity relation that can be in the family
RM(W ) of relations.

Figure 1.5.a and 1.5.b show an example of a connotative context and lattice. The
attributes ‘feline’, ‘canine’, ‘domesticated’, and ‘wild’ are attributes of denotata, but
the attributes ‘common language’ and ‘biological terminology’ depend on the disam-
biguated words. For example, ‘domestic dog’ and ‘Canis familiaris’ have usually the
same denotata, but they are used in different language contexts. In this example, a
denotative context is part of a connotative context. Often denotative and connota-
tive structures are modeled on the same set of disambiguated words. If they do share
the same set of disambiguated words the denotative concepts should be entailed by
the connotative concepts because according to Definition 1.3 the particular mean-
ing of a disambiguated word contains all aspects of the word meaning therefore the
denotation of the word should be included. Hence the following is defined:

Definition 1.8:
A denotative structure SD and a connotative structure SK can be combined if they
contain the same set of disambiguated words, i.e. W := W SD and W = W SK , and a
mapping dnt : K(W ) → C(W ) can be defined with dnt(cntSK (w)) = dntSD(w) for
all w ∈ W .

If SD and SK can be combined it follows that cntSK (w1) = cntSK (w2) =⇒ dntSD(w1)
= dntSD(w2). The other direction does not have to be true, because each denotative
concept can belong to several connotative concepts. For example, ‘Canis familiaris’
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and ‘domestic dog’ can have the same denotation, but they have different connota-
tions. The next definition provides a formal modeling of a lexical database.
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Figure 1.5.a: A connotative context

Felis catus

biological term feline domest. canine wild common lang.

wildcatjackal

cat
dog

Canis aureus
Canis familiaris

Figure 1.5.b: A line diagram of the connotative lattice of the context in Fig. 1.5.a

Definition 1.9:
A lexical structure is a relational structure

SL := (W, M(W ), Fn, V, M(V ), F, AL; IL, form, mng, Hmg,

P ls, n−, wrd,RW ,RM(W ),RV ,RM(V ),RF , )

with the following conditions:
1) The elements of the set V are called words, the elements of the set W disambiguated
words, the elements of the set M(V ) word meanings, the elements of the set M(W )
particular meanings, the elements of the set F word forms, and the elements of the
set Fn forms of disambiguated words.
2) A formal context KL := (W, AL, IL) is called lexical context. It has disambiguated
words as formal objects and attributes of those disambiguated words as formal at-
tributes. The set of formal attributes is denoted by AL and the relation between
formal objects and attributes by IL. A lattice B(KL) is called lexical lattice.

26



3) M(V ) can be empty. form : W ∪V → Fn∪F and mng : W ∪V → M(W )∪M(V )
are mappings with form(w) ∈ Fn for w ∈ W , form(v) ∈ F for v ∈ V , mng(w) ∈
M(W ) for w ∈ W , and if M(V ) 6= ∅, mng(v) ∈ M(V ) for v ∈ V . mng : W → M(W ),
form : W → Fn, and, if defined, mng : V → M(V ) are bijections.

4) The mappings n− : Fn → F and wrd : W → V must fulfill n−form(w) =
form(wrd(w)).

5) The mappings P ls : V → ℘(W ) and Hmg : F → ℘(V ) are defined as P ls(v) :=
{w ∈ W | wrd(w) = v} and Hmg(f) := {v ∈ V | form(v) = f} and called polysemy
and homography, respectively.

6) RW , RM(W ), RV , RM(V ) and RF are families of relations: RW := (RWj)j∈JW
is a

family of relations RWj ⊆ W ×W ; RM(W ) := (RMj)j∈JM
a family of relations RMj ⊆

M(W ) × M(W ); RV := (RV j)j∈JV
a family of relations RV j ⊆ V × V ; RM(V ) :=

(RMj)j∈JM
a family of relations RMj ⊆ M(V ) × M(V ); and RF := (RFj)j∈JF

is a
family of relations RFj ⊆ F × F . Relations of the families RM(W ) and RM(V ) are
usually similarity relations. Relations of the family RW are called lexical relations
(and under some circumstances (see Section 1.6) semantic relations), relations of the
family RV morpho-lexical relations, and relations of the family RF morphological
relations. All families of relations can be empty.

The following should be remarked: Similarly to denotative and connotative struc-
tures, which contain denotative or connotative contexts, a lexical structure contains
a lexical context. The set of formal attributes of the lexical context can coincide with
other sets of the lexical structure, but it can also be disjoint to the other sets. Defini-
tion 1.9 is consistent with Definitions 1.2 and 1.3 because according to condition 3 in
Definition 1.9 there is a one-to-one correspondence between w and mng(w) and v and
mng(v). Therefore a word can be uniquely identified by the tuple (form(v), mng(v))
and a disambiguated word by (form(w), mng(w)) or (n−form(w), mng(w)). If forms
of disambiguated words (elements of the set Fn) are thought to be word forms con-
catenated with a sense number then the mapping n− (see condition 4) yields for
each form fn the corresponding word form f by deleting the sense number. The
mapping form : W → Fn is a bijection because every word form with a sense
number corresponds to exactly one disambiguated word. The mapping wrd from dis-
ambiguated words to words obtains the not disambiguated basic word v := wrd(w)
for a disambiguated word w. According to condition 5, polysemy is defined as the set
of disambiguated words which belong to one word. Or, since disambiguated words
correspond to particular meanings, polysemy is represented by the set of particular
meanings of a word. Polysemy is not defined on word forms because only disam-
biguated words that share a word form and have similar particular meanings are
normally called polysemous. Modifying conditions 4 and 5, it would be possible to
define polysemy based on a similarity relation on the meanings. For example, a simi-
larity of meaning (SIMP ls) could be defined as ‘having the same intent’ in a connota-
tive structure SK, i.e. mng(w1)SIMP lsmng(w2) :⇐⇒ γSKmng(w1) = γSKmng(w2).
Then two disambiguated words would be polysemous if they have the same word
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form and a similar meaning, i.e. ∃v∈V : (w1 ∈ P ls(v) and w2 ∈ P ls(v)) :⇐⇒
(mng(w1)SIMP lsmng(w2) and n−form(w1) = n−form(w2)). Since polysemy is a
partition of W into equivalence classes, the mapping wrd can also be defined as the
mapping which leads from each equivalence class in W to its basic word in V . Homog-
raphy is defined on word forms as the set of words which share a word form. Hmg

creates a partition on V into equivalence classes. As an example for the terminology,
the word v1 with form(v1) = ‘morning star’ in W3 has five polysemous disam-
biguated words (P ls(v1) = {w1, w2, w3, w4, w5}) with form(w1) = ‘morning star 1a’,
form(w2) = ‘morning star 1b’, and so on. The mapping n− yields n−(‘morning star
1a’) =‘morning star’. The homography Hmg(‘morning star’) = {v1} is a set with
one element v1.

It is not discussed in this paper if there is a mapping between word meanings and
the particular meanings of their disambiguated words. In a connotative structure
the meaning of a word could be defined as the meet of the particular meanings
in a connotative lattice (the common core meaning, mng(v) :=

∧
{γmng(w) | v =

wrd(w)}) or their join (all the possible usages of a word, mng(v) :=
∨
{γmng(w) | v =

wrd(w)}). Or it could be tried to model Wittgenstein’s (1971) ‘family resemblance’,
for example, mng(v) :=

∨
w1,w2,w3∈P ls(v)(γmng(w1) ∧ γmng(w2) ∧ γmng(w3)), but

this will not be investigated in this paper. In general the Definition 1.9 is thought
to be a framework for the modeling of dictionaries, lexical databases, and thesauri.
Sections 1.10 to 1.12 illustrate how the definition can be applied to three prototypical
examples: W3, RIT, and WordNet. Depending on what is actually given in a lexical
database, the sets and relations of the lexical structure might have to be adapted. We
excluded synonymy from the definition of a lexical structure, because in a thesaurus
it is an important relation which generates the structure, but in a dictionary it is
presented only implicitly or it entirely depends on denotative or connotative contexts.

1.6 Synonymy and word equivalence

The term ‘synonymy’ has probably as many different definitions in linguistic theo-
ries as the term ‘word’. We mention only two definitions which can be interpreted
within our theory: first, in componential semantics (according to Lincke et al. (1994))
two words are called ‘synonymous’ if they have the same semantic features. In our
modeling this corresponds to ‘having the same intent in a connotative or denotative
context’. Second, another common definition is to call two words synonymous if they
can be exchanged for each other in every language context (Ullmann (1957) calls
this ‘pure synonymy’) or if they can be exchanged for each other in some language
context (Ullmann (1957) calls this ‘pseudo-synonymy’). Since ‘pure synonyms’ are
very rare, we define synonymy for disambiguated words and not for words in general.
A distinction can be made whether the disambiguated words share their denotative
or their connotative concepts. We call the first one ‘synonymy’ and the second one
‘strong synonymy’. Although it seems that words which are synonymous (but not
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strong synonymous) to each other for all their particular meanings should be very
rare in natural languages, Old (1996) searches for all words in RIT which always
occur in the same semicolon-groups (see Section 1.11) and discovers that these ‘word
equivalents’ are not that rare. His lists include words and their abbreviations, words
with spelling variations, English words with foreign translations, and so on. Lincke
et al. (1994) find similar reasons for synonymy or partial synonymy: a language often
has regional, social, and stylistic distinct words which have the same denotation. We
adapt the term ‘synset’ for ‘set of synonymous words’ from Miller et al. (1990).

Definition 1.10:
Synonymy SY NSD is a relation among disambiguated words in a denotative structure
SD. Disambiguated words are called synonyms in a denotative structure, if they
denote the same denotative word concept, i.e. w1SY NSDw2 :⇐⇒ dnt(w1) = dnt(w2).
The mapping syn : W → ℘(W ) is defined as syn(w) := {w1 ∈ W | dnt(w) =
dnt(w1)} and SC(W ) := {A ⊆ W | ∃w∈WA = syn(w)}. syn(w) is called the synset
of the disambiguated word w in SD.
Strong synonymy SSY NSK is a relation among disambiguated words in a connota-
tive structure SK. Disambiguated words are called strong synonyms in a connotative
structure, if they connote the same connotative word concept, i.e. w1SSY NSKw2 :⇐⇒
cnt(w1) = cnt(w2). The mapping ssyn : W → ℘(W ) is defined as ssyn(w) := {w1 ∈
W | cnt(w) = cnt(w1)} and SK(W ) := {A ⊆ W | ∃w∈W A = ssyn(w)}. ssyn(w) is
called the strong synset of the disambiguated word w in SK.
Word equivalency EQV SD is a morpho-lexical relation in a lexical structure accord-
ing to a denotative structure SD. Two words v1, v2 are called word equivalents, if
they share all their synsets, i.e. v1EQV SDv2 ⇐⇒ (∀w1∈P ls(v1)∃w2∈P ls(v2) : syn(w1) =
syn(w2) and ∀w2∈P ls(v2)∃w1∈P ls(v1) : syn(w1) = syn(w2)).

Since dnt and cnt are mappings, SY NSD and SSY NSK are equivalence relations on
W . Lexical relations that hold for all synonyms of the disambiguated word are called
semantic relations (see Section 2.8) because they are defined on the denotative word
concepts. Therefore synonymy is a semantic relation. In a denotative lattice, synony-
mous words denote the same denotative word concept. In a connotative lattice the
strong synsets are the sets of disambiguated words that connote the same connota-
tive concept which means their object concepts are equal. As an example consider
Figure 1.3.b and the disambiguated word w1 with form(w1) =‘morning star 1a’.
SC(w1) = {morning star1a, evening star1a, Venus} denotes the denotative word con-
cept ‘the planet Venus’. {morning star1b}, {evening star1b} and {morning star1c,
evening star1c} are further synsets in Figure 1.3.b. None of these are strong synsets
according to the lattice in Figure 1.7. Since all disambiguated words in a synset
denote the same denotative word concept there is a bijection between synsets and
denotative word concepts, and similarly there is a bijection between strong synsets
and connotative word concepts. Therefore the denotative and connotative word con-
cepts can be described by their synsets and strong synsets, respectively. But, because
of word equivalents and because of synsets which contain only one word, it is usually

29



not possible to uniquely represent a synset as a set of word forms without their sense
numbers. For example, {morning star, evening star} is ambiguous in Figure 1.3.b. If
SD and SK can be combined then it follows that syn(w) = syn(ssyn(w)).

1.7 Other relations

This section presents a definition of hyponymy, which is another semantic relation
besides synonymy, and some details on the classification of relations into families of
relations in the Definitions 1.5, 1.7, and 1.9. More details on relations can be found
in chapter 3. It should be remarked that hyponymy and synonymy according to
Definition 1.10 and 1.11 always depend on the denotative and connotative contexts.
That means if the attributes in AD and AK are not appropriately selected for the
purpose of displaying linguistic synonymy and hyponymy, it is possible that words
become synonyms or hyponyms according to the Definitions 1.10 and 1.11 which
usually would not be called synonyms or hyponyms in linguistic terminology.

Definition 1.11:
(Denotative) hyponymy HY P SD is a relation among disambiguated words in a de-
notative structure. A disambiguated word is called (denotative) hyponym of another
disambiguated word, if its denotative concept is a subconcept of the denotative con-
cept of the other word, i.e. w1HY P SDw2 :⇐⇒ dnt(w1) ≤

SD dnt(w2).
(Connotative) hyponymy HY P SK is a relation among disambiguated words in a con-
notative structure. A disambiguated word is called (connotative) hyponym of another
disambiguated word, if its connotative concept is a subconcept of the connotative
concept of the other word, i.e. w1HY P SKw2 :⇐⇒ cnt(w1) ≤

SK cnt(w2).
Hypernymy is the inverse relation to hyponymy, i.e. if w1 is a (denotative or conno-
tative) hyponym of w2 then w2 is a (denotative or connotative) hypernym of w1.

The classification of relations in this paper which is based on the sets on which the
relations are defined is similar to DIN 2330 (1979) and WordNet terminology. DIN
2330 distinguishes three types of relations: ontological relations, which are based on
objects; abstract relations, which are based on intents of concepts; and contextual
(syntagmatic) relations, which are based on collocations in a text or on a scheme.
WordNet (Miller et al, 1990), on the other hand, distinguishes only semantic re-
lations, which are defined on synsets, from lexical relations, which are defined on
disambiguated words. In this paper the ontological relations (DIN 2330) are called
denotative relations which are defined on denotata and attributes of denotata and
also include the relation ID between denotata and their attributes. Denotative rela-
tions are relations which depend only on the denotata and not on the verbal repre-
sentations of the denotata and their attributes. These relations include denotative
part-whole relations (a certain or prototypical denotatum has a certain or prototypi-
cal part), and others. A main issue of chapter 2 is to investigate how these denotative
relations can be generalized to semantic relations (for example meronymy) among de-
notative concepts or disambiguated words via their denotative word concepts. Hence
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semantic relations in our terminology correspond to abstract relations (DIN 2330),
but not to, for example, Rahmstorf’s (1991) semantic relations which are defined
between expressions and their meanings. Lexical relations (for example antonymy)
are defined on disambiguated words. Our distinction between semantic and lexical
relations corresponds therefore to the WordNet terminology. Antonymy is a lexical
and not a semantic relation, because it depends on certain contrary attributes but
also on some intersubjective agreement about which words are considered to be pairs.
For example, ‘fast’ and ‘slow’ are antonyms, but ‘rapid’ and ‘slow’ usually not.

Morpho-lexical relations are relations on words. For example, etymological relations
are usually morpho-lexical because they often refer to several particular meanings
of a disambiguated word. Since etymological relations do normally not include ho-
mographs, they are not morphological relations which entirely depend on the word
forms. The alphabetical order of the lemmas in a dictionary is a morphological re-
lation. Contextual or syntagmatic relations (DIN 2330) are only part of our model
if they are lexicalized and therefore can be classified as semantic or lexical relations.
For example, between ‘dog’ and ‘bark’ a functional semantic relation could be defined
in a lexical database.

1.8 Linguistic contexts

In this section the terminology is further extended and applied to some examples. It
is assumed for this section that a lexical, a denotative, and a connotative structure
(SD, SK , and SL) can be combined, that means that they all share the same set W of
disambiguated words and the conditions from Definition 1.8 hold. Linguistic contexts
are according to Section 1.1 formal contexts whose formal objects and attributes are
elements of linguistic research. The most important linguistic contexts are probably
lexical contexts (compare Definition 1.9) which have two basic types:

Definition 1.12:
The two basic types of lexical contexts and lattices are: lexical denotative contexts
KLD := (W, AD, ILD) (lexical denotative lattice B(KLD)) and lexical connotative con-
texts KLK := (W, AK, ILK) (lexical connotative lattice B(KLK)) whose sets of at-
tributes are taken from a denotative or connotative structure. The relations are de-
fined as wILDa :⇐⇒ dnt(w) ≤SD µa and wILKa :⇐⇒ cnt(w) ≤SK µa, respectively.

From the definition follows that B(KLD) is isomorphic to a join-preserving sublattice
of its B(KD)6. A lexical connotative lattice B(KLK) is even isomorphic to its B(KK)
because of the bijection between M(W ) and W and the implied isomorphism be-
tween ILK and IK. Using these isomorphies, in lexical denotative and connotative

6Proof: Instead of KD a formal context K∗D := (D∪W, AD, ID ∪ ILD) can be defined. Obviously,
B(KD) = B(K∗D). Since all rows of KLD are contained in K∗D it follows that B(KLD) is a join-
preserving sublattice of B(K∗D) which proves the statement.
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lattices exactly the object concepts correspond to the (denotative or connotative)
word concepts. The set AK of connotative attributes AK can include the set AD of
denotative attributes in a denotative structure. For example, AK can be the union
of AD and a set of style features, such as {neutral, poetic, vernacular, vulgar, . . .}
(compare the context in Figure 1.5.a).

evening star 1b

morning star 2

a weapon a California herb

morning star 3

a small bulbous plant

evening star 2 morning star 1a
evening star 1a

morning star 1c
evening star 1c

morning star 1b

one of the 5 planets... 

12756 km

seen before sunriseseen after sunset

Figure 1.6: A lexical denotative concept lattice of a context (W, AD, ILD)

evening star 2

12756 km

evening star 1b morning star 1b

one of the 5 planets... 
related to ‘evening’

evening star 1c morning star 1c

evening star 1a morning star 1a

related to ‘morning’

seen before sunriseseen after sunset

a small bulbous plant a weapon a California herb

morning star 2 morning star 3

Figure 1.7: A lexical connotative lattice of a context (W, AK, ILK)

Figure 1.6 shows a line diagram of a lexical denotative lattice (W, AD, ILD), which has
the attributes of its denotata in an underlying denotative context KD (compare Figure
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1.3) as attributes. In many non-linguistic applications of Formal Concept Analysis it
is difficult to distinguish between KD and KLD, especially, if the disambiguated words
denote individual concepts. The main difference is that denotata are always instances
or items (see Definition 1.3), therefore ‘morning star 3’ cannot be a formal object
in a denotative context, whereas ‘prototypical morning star 3’ is an instance and
can refer to a denotatum. This distinction is essential for the modeling of relations
(see chapter 2) because denotative relations are not quantified whereas semantic
relations need quantifiers. Figure 1.7 illustrates a lattice of a lexical connotative
context (W, AK , ILK) with AK := AD ∪ {related to ‘evening’, related to ‘morning’},
ILD ⊆ ILK and W , AD and ILD are taken from the denotative lattice in Figure
1.6. The denotative word concepts in Figure 1.6 can be described by their synsets,
such as {morning star 1a, evening star 1a}, or by the extents and intents of the
formal concepts, such as ({morning star 1a, evening star1a}, {12756 km, one of the
5 planets..., seen after sunset, seen before sunrise}). A connotative word concept in
Figure 1.7 is, for example, ({evening star 1c, evening star 1a}, {one of the 5 planets...,
seen after sunset, seen before sunrise, related to ‘evening’}) which is described by the
strong synset {evening star 1c}. It should be noted that the synsets and strong synsets
are formed by the disambiguated words which share their object concepts and not
by the extents of the formal concepts.

birthday

calendar day (any) day

day of the week day

day

eve morrow today

washday Walpurgis night
religious holiday

legal holidaybirthday

date

day, solar day

off-day Doomsday

tomorrowyesterday(special occasion day)holidayanniversary

Figure 1.8: A lexical concept hierarchy

Figure 1.8 shows a lexical concept hierarchy (a lattice without bottom concept) which
is modeled after WordNet. It is difficult to classify the corresponding lexical lattice.
It cannot be a denotative lattice because even a prototypical ‘yesterday’ should be a
day of the week. Therefore the formal objects are not denotata, but disambiguated
words. It can be a lexical denotative lattice where the prototypical denotata in an
underlying denotative lattice, such as ‘prototypical yesterday’, are non-lexicalized. It
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could also be argued that some of the attributes, which are never explicitly mentioned
in WordNet, are not purely denotative because every day is a day of the week, a day,
a yesterday, a tomorrow, and a today at the same time. Whether a day is a yesterday
or a tomorrow does not depend on the day, but on the perspective of the speaker. On
the other hand only the word tokens ‘yesterday’ and ‘tomorrow’ can refer to the same
denotatum, whereas prototypical ‘yesterdays’ and ‘tomorrows’ are probably different.
Hence, for the modeling of WordNet in Section 1.12, we decided to interpret concept
hierarchies, such as the one in Figure 1.8, as lexical denotative.

morning star 3

morning star 2 morning star 3evening star 2 morning star 1a
evening star 1a

morning star 1c
evening star 1c

morning star 1bevening star 1b

evening star 1b morning star 1b

{morning star 1c,
evening star 1c }

evening star 2
{morning star 1a,

evening star 1a } morning star 2

Figure 1.9: The lattice of Figure 1.6 as (W, SC(W ), HY P ∗)

Similarly to what has been said in Section 1.4 there are different possibilities to con-
struct equivalent versions of formal contexts and lattices. For example, instead of dis-
ambiguated words, denotative or connotative word concepts or synsets can be taken
as the formal objects of an equivalent version of a lexical context. (SC(W ), AD, I

µ
LD)

is an equivalent version of KLD if the relation I
µ
LD is defined by syn(w1)I

µ
LDa :⇐⇒

∀w∈syn(w1) : wILDa. For example, if the lexical denotative concept lattice of morn-
ing star in Figure 1.6 is interpreted as a KLD, then the objects are ‘morning star
1a’, ‘evening star 1a’, and so on. If it is interpreted as (SC(W ), AD, I

µ
LD), then the

objects are synsets, such as {morning star 1a, evening star 1a} and so on. Since
there is a bijection between SC(W ) and C(W ), (C(W ), AD, I

µ
LD) is another equiv-

alent representation. The object concepts of a lexical denotative lattice are always
denotative word concepts. Therefore, since a lattice can be uniquely constructed
from its object and attribute concepts and their ordering (Ganter & Wille, 1996),
(C(W ), C(W ),≤), (SC(W ), SC(W ),≤), and (W, SC(W ), HY P ∗) are further equiva-
lent representations of a KLD if all attribute concepts are also denotative word con-
cepts. The relation HY P ∗ is defined by w1HY P ∗syn(w2) :⇐⇒ dnt(w1) ≤

LD dnt(w2).
Figure 1.9 shows an example of a lexical lattice for a context (W, SC(W ), HY P ∗).

34



Obviously, it would be sufficient to write either the attributes or the objects in
the line diagram. Section 1.12 demonstrates that WordNet can be modeled in the
form of (W, SC(W ), HY P ∗). Equivalent versions of lexical connotative contexts are
(K(W ), AK, I

µ
LK) and (SK(W ), AK, I

µ
LK), and so on.
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Figure 1.10: A morpho-lexical context (V, AD, IMLD) and its lattice

To visualize the polysemy, a so-called morpho-lexical denotative lattice of a context
(V, AD, IMLD) can be investigated which has words as objects and attributes of the
denotata of its particular meanings in an underlying lexical denotative context as
attributes. The relation IMLD is usually defined as vIMLDa :⇐⇒ ∃w∈W : (wrd(w) =
v and wILDa) that means that all denotative attributes which at least one disam-
biguated word has are considered7. Figure 1.10 illustrates such a morpho-lexical lat-
tice. It gives a survey of the polysemy of ‘morning star’ and ‘evening star’. (‘Morning
star 3’ is missing.) Since words do not have denotata (only disambiguated words have
denotata according to Definition 1.3), it is not possible to assign denotata to concepts

7Alternatively the definition vIMLDa :⇐⇒ ∀w∈W : (wrd(w) = v and wILDa) is possible if only
the common denotative attributes of all disambiguated words of a word are considered.
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in the lattice in Figure 1.10. For example, ‘evening star’ has the attributes of being a
planet and a plant, but no denotatum can be a planet and a plant at the same time.
On the other hand, in lexical denotative lattices it is often possible to assign deno-
tata to concepts, especially, if the disambiguated words denote individual concepts.
In Section 1.11 so-called neighborhood contexts which are of the form (V, AD, IMLD)
are developed for RIT.

12756 km a weapon a California herba small bulbous plant

morning star 1c
evening star 1c

evening star 2 morning star 1a morning star 2 morning star 3
evening star 1a

evening star 1b morning star 1b

evening star morning star

one of the planets ...

seen after sunset seen before sunrise

Figure 1.11: A morpho-lexical lattice of a context (W ∪ V, AD, ILD ∪ IMLD)

Figure 1.11 presents another attempt to show the polysemy of ‘morning star’ and
‘evening star’. This time as a morpho-lexical denotative lattice of a formal context
(W ∪ V, AD, ILD ∪ IMLD). It should be obvious by now that many different kinds
of linguistic contexts and lattices are possible. The terminology could be extended
in many ways. For example, morphological contexts of the form (F, AF , IF ) can be
studied. Phonemes, graphemes and morphemes could be included in the terminology
and formal contexts could be defined on them. We think that, for example, phonemes
and their features lead to interesting lattices that enable phonological comparisons
since phonological data are often already presented as cross-tables. An example for
such a lattice of German vowels can be found in Wille (1984), but to our knowledge
no further research using Formal Concept Analysis in that area has been achieved.
Besides phonology, componential or seme analyses of lexical fields is another appli-
cation where the data are often presented in cross-tables of disambiguated words
and their semantic features. In our terminology they can be interpreted as lexical
denotative or connotative contexts and their lattices could be studied. An example
(to our knowledge the only example so far) for the application of Formal Concept
Analysis to componential analysis is Kipke & Wille (1987). Many other applications
are possible.
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1.9 Non-lexicalized concepts

Denotative or lexical denotative lattices can be used to visualize how the denotative
word concepts are distributed among the denotative concepts. If several languages
are to be compared, denotative lattices can be drawn for each language. The lattices
visualize how the languages differ in their conceptual systems. As mentioned be-
fore, concepts are non-lexicalized if they are denotative concepts but not denotative
word concepts. Rahmstorf (1991) defines non-lexicalized expressions as expressions
which can be derived from formulas or rules whereas lexicalized expressions cannot
be derived from formulas. In a lexical denotative lattice this corresponds in our termi-
nology to the fact that non-lexicalized concepts can be constructed as meets or joins
from denotative word concepts in the lattice (since all object concepts in a lexical
denotative lattice correspond to denotative word concepts). For a denotative lattice
which is, for example, constructed using the scientific knowledge of a scientific sub-
language and the set W of disambiguated words of the everyday language, it does not
have to be true that every non-lexicalized concept can be constructed as a meet or
join of denotative word concepts. But Rahmstorf’s definition should probably always
hold for lattices that do not combine the background knowledge and vocabulary of
different languages or sub-languages.

Since it is difficult to distinguish lexical gaps (for example ‘not being thirsty’) from
complex concepts (for example ‘tall woman’) by a formal definition both are called
non-lexicalized concepts for the purpose of this paper. Non-lexicalized concepts can
be divided into three different kinds:

First, there are intra-language non-lexicalized concepts that are denotative concepts
of a language but not denotative word concepts (i.e. the set C \C(W )). This means
that the denotative knowledge of a language permits the construction of concepts
(in English for example ‘not being hungry’ and ‘bald-headed man’) which can be
expressed in words but do not appear as an entry in the lexical database.

Second, there are inter-language non-lexicalized concepts that are denotative concepts
of one language L1, but not denotative concepts of another language L2 (i.e. the set
CL1 \ CL2). These concepts are difficult to translate because even concepts for a
description might not exist in the target language. For example, the German word
‘Kitsch’ cannot be translated without a long explanation on style and taste. The
American word ‘blues’ cannot be translated into other languages without background
knowledge of the American history.

Third, there are multi-inter-language non-lexicalized concepts that can be expressed
using terms of several languages, but not of one single language (i.e. the set CL1∪...∪Ln\
CL1 ∪ . . . ∪ CLn). This third kind of non-lexicalized concepts is rather theoretical.
Concepts, such as ‘kitschy blues’ (whatever that means) can only be understood by
people who have enough knowledge of German and American denotations. These
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concepts occur if denotative (or lexical) contexts of several languages are combined
and the common conceptual structure is computed.

1.10 The formalization of a dictionary, such as W3

Webster’s Third New International Dictionary (W3) is used as an example of a
traditional dictionary in this paper. It can be modeled as a lexical structure

SW3 := (W, M(W ), Fn, V, F ; form, mng, Hmg, P ls, n−, wrd)

with the following conditions:
A word v is a headword of a paragraph since homographs are not contained in the
same paragraph. Meanings of words (in the set M(V )) are missing because each
gloss belongs to a disambiguated word. A disambiguated word w is given by its form
form(w) which consists of the form form(wrd(w)) of the basic word and a sense
number. The meaning mng(w) of a disambiguated word is indicated by a gloss and
sometimes further information in brackets, pictures, and others. For example, infor-
mation on connotations can be deduced from comments such as ‘dialect’ or ‘slang’
and on denotations from the pictures. Semantic relations are implicitly contained
in the glosses (Calzolari (1988) extracts semantic relations from such a traditional
dictionary to create a thesaurus). But they need not be systematical and cannot be
accessed without parsing software. Even a search for synonyms is almost impossible
if the synonyms are not explicitly mentioned in the glosses. The Figures 1.3, 1.6, 1.7,
1.9, and 1.11 show different modelings of the example of ‘morning star’ and ‘evening
star’ in W3 to indicate how implicit structures in dictionaries can be visualized. The
formal objects in these figures are denotata of ‘morning star’ and ‘evening star’ or
the words or disambiguated words themselves. Such formal objects could be selected
automatically according to some criteria (such as words from lexical fields, the nouns
of a paragraph of a text, or others). Unfortunately, the examples showed that it is not
very useful to take the glosses as formal attributes without modification. The glosses
do not distinguish properly between denotative and connotative aspects. They are
designed to be interpreted by a natural language speaker and not by a machine. In
all the examples, the formal attributes where derived by extracting information from
the glosses and adding general background knowledge where necessary. Therefore it
seems that most types of linguistic contexts cannot automatically be derived from dic-
tionaries, such as W3. It is possible that linguistic contexts consisting of information
on phonology or etymology could be automatically derived from such dictionaries,
because they are based on word forms or words, but that is not investigated in this
paper.

1.11 The formalization of a thesaurus, such as RIT

Roget’s International Thesaurus (RIT) has been studied by Sedelow & Sedelow (for
example, 1974 and 1986) for more than 20 years. RIT consists of two parts: a clas-
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sification of categories and an alphabetical index. Words are disambiguated by their
grouping together with other words of similar meanings into so-called semicolon-
groups, the sixth and lowest level of the hierarchy. Semicolon-groups are gathered
in paragraphs, the fifth level of the hierarchy. The higher levels are categories or
level-4-classes, level-3-classes (indicated by letters), level-2-classes (indicated by Ro-
man numerals), and level-1-classes (indicated by Arabic numerals). For example, one
particular meaning of ‘summer’ is classified as ‘1.VI.A.105.6.4’ where ‘1’ is the class
‘abstract relations’, ‘1.VI’ is ‘time’, ‘1.VI.A’ is ‘absolute time’, and ‘105’ is ‘time’.
The paragraph and semicolon-group levels do not have names. The other categories
of ‘summer’ are ‘128 season’, ‘216 shaft’, and ‘327 heat’. Several formalizations have
been developed. Bryan ((1973) and (1974)) defines a thesaurus as a triple consisting
of entities (disambiguated words in our terminology), word forms, and classes. Since
homographs are distinguished in the index, but not in the first part of the RIT and
only the first part is contained in the lexical database that the Sedelows use, Bryan’s
major effort was to distinguish homographs from polysemous words using similarity
in meaning. Bryan defines different chains consisting of alternating word forms and
semicolon-groups so that each pair ‘(word form, semicolon-group)’ corresponds to an
entity in RIT. The strongest chains, so-called ‘type-10-chains’, form a partition of the
entities of RIT. According to Bryan, homographs are entities which occur in separate
components of that partition. Talburt & Mooney (1990) investigate the components
in more detail and discover that a word often occurs in as many components of RIT
as the Oxford English Dictionary has different polysemous senses for it. This ques-
tions Bryan’s definition of homography. Another interesting modeling of RIT has
been achieved by Knuth (1993) who draws graphs of RIT using the cross-references
instead of the hierarchy.

A formalization of RIT based on Formal Concept Analysis can be found in Priss
& Wille (in preparation). It uses the ‘plus’ mappings ι+ and ε+ (see Definition
1.1): ι+(G1) := {m ∈ M | ∃g∈G1

: gIm}, which yields for a set G1 of objects in
a context (G, M, I) all attributes that belong to at least one of the objects, and
ε+(M1) := {g ∈ G | ∃m∈M1

: gIm} for a set M1 of attributes. If two plus mappings
are applied to a set G1 it results in a set ε+ι+(G1) (with ε+ι+(G1) ⊇ G1) which
is called the neighborhood of G1 under I. A neighborhood of attributes is defined
analogously. Wunderlich (1980) mentions neighborhoods (without giving them this
name) used with bilingual dictionaries: a neighborhood of a German word is obtained
by finding all the English translations of that word, and then all the German trans-
lations of the English translations. In general, neighborhoods can be used to select
a set of related items from a set that would be too large to oversee. In RIT the
neighborhood of a word is used as set of formal objects of a so-called neighborhood
context (ε+ι+(G1), ι

+ε+ι+(G1), I).

In this paper RIT is modeled as a lexical structure

SRIT := (W, M(W ), V, F ; form, mng, Hmg, P ls, wrd)
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which is combined with a denotative context

KRIT := (SC(W ), CRIT ,≤)

with the following conditions:
A word v is a headword of a paragraph in the index. Since the index is missing in
the electronic versions of RIT that are used by the Sedelows and in Darmstadt, in
the electronic version homography cannot easily be detected and each word v is in
one-to-one correspondence to its form form(v), but hopefully that will be improved
in the future. Meanings of words (the set M(V )) are missing. A semicolon-group
is interpreted as a synset in the denotative context KRIT , i.e. two disambiguated
words w1 and w2 are synonyms if they occur in the same semicolon-group (or synset)
syn(w1) = syn(w2) because they denote the same denotative concept in KRIT . A
disambiguated word w is therefore given by its form form(wrd(w)) and the synset
syn(w) in which it occurs. Sense numbers are not denoted but could be generated
using the ordering in the index. The meaning mng(w) of a word is according to
Definition 1.2 the particular meaning that a native speaker of English recognizes
after considering the other words in the same synset and the hierarchy above it.
Some information on connotation is explicitly represented in brackets behind the
disambiguated word (such as, ‘dialect’, language origin, author of a quotation). The
denotative context KRIT has the synsets as formal objects and the classes of the
RIT hierarchy as formal attributes. Since the synsets as semicolon-groups are level-
6-classes and therefore classes themselves, the relation between formal objects and
attributes is the conceptual ordering ≤. Except of the bottom concept, which has no
formal objects in its extent, the concept lattice ofKRIT forms a tree. The atoms of this
lattice, which are concepts of the form ({syn(w)}, {syn(w)}), can be interpreted as
denotative word concepts, the other concepts are non-lexicalized because they are not
represented by synsets. As semantic relations, in RIT only the conceptual ordering
≤ and synonymy are presented. In earlier versions (RIT1, 1852) there has also been
antonymy. Some other semantic relations, such as meronymy occur un-systematically
and implicitly.

Besides the context KRIT the polysemy of the words can be modeled in a con-
text (V, SC(W ), HY P ∗

V )8 with relation HY P ∗
V defined as vHY P ∗

V s ⇐⇒ ∃w∈W :
(wrd(w) = v and syn(w) = s). The relation can be interpreted as ‘has polysemous
meaning’. Since the synsets correspond to denotative word concepts, the context
(V, SC(W ), HY P ∗

V ) is a morpho-lexical context of the form (V, AD, IMLD) (compare
Figure 1.10). The contexts KRIT and (V, SC(W ), HY P ∗

V ) can be composed to one
context in different ways, for example, (V, SC(W ), HY P ∗

V ) ◦ (SC(W ), CRIT ,≤) :=
(V, CRIT , HY P ∗

V ◦ ≤) with v(HY P ∗
V ◦ ≤)c :⇐⇒ ∃s∈SC(W ) : (vHY P ∗

V s and s ≤ c).
Neighborhood contexts and lattices are used to display the relationship between a
word and other words that are semantically related to the first word by sharing at

8Or (F, SC(W ), HY P ∗
F ) in the electronic versions of RIT.
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least one synset with it. They are essential because the complete contexts, KRIT and
(V, SC(W ), HY P ∗

V ), are too large to be comprehensible and therefore subcontexts
have to be selected. Figure 1.12 shows a line diagram of the neighborhood lattice
of ‘summer’ in RIT, i.e. (ε+ι+({summer}), ι+ε+ι+({summer}), HY P ∗

V ) and Figure
1.13 shows a line diagram of the same lattice composed with the three lower levels
of the RIT hierarchy. For more details on context constructions in RIT see Priss &
Wille (in preparation).
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summertimeweek-end

summerwinter

Figure 1.12: A neighborhood lattice of ‘summer’ in RIT

1.12 The formalization of a lexical database, such as Word-

Net

WordNet is a lexical database of the English language developed by the Cognitive
Science Lab under George Miller (Miller et al., 1990). It was started as a model of
the mental lexicon but is actually developed as a tool for computational linguistics.
Words are disambiguated by collecting them in synsets. Lexical relations hold among
the disambiguated words, and semantic relations hold among the synsets. WordNet
can be formalized as a lexical structure

SWN := (W, M(W ), V, F ; form, mng, P ls, n−, wrd,RW )

which contains the lexical denotative context

KWN := (W, SC(W ), HY P ∗
W )

a family RSC(W ) of semantic relations, and a family RW of lexical relations with the
following conditions:
The meaning mng(w) of a disambiguated word w is indicated by its relations to other
words, synsets and additional glosses. The sense numbers exist in the non-public ver-
sions of WordNet but are not displayed in the public versions. A disambiguated word
w is therefore uniquely described by the form form(wrd(v)) of its basic word, its
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part of speech and its synset syn(w). Homography is not explicitly marked. The
context KWN (compare section 1.8) is the Dedekind closure of the ordered set of
the hyponymy ordering that is implemented in WordNet. The semantic relations
are specific to parts of speech: synonymy and antonymy are defined for all parts
of speech. Among nouns hyponymy, meronymy, and coordination, among verbs tro-
ponymy, cause, and entailment are implemented (compare Chapter 3). Figure 1.8
shows an example of the WordNet hyponymy ordering and Chapter 2 illustrates
several examples of the meronymy relation.
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summery midsummer
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summer winter

Figure 1.13: A neighborhood lattice with hierarchy of ‘summer’ in RIT
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2 Relational Concept Analysis

Relational Concept Analysis is the extension of Formal Concept Analysis—which
provides a conceptual hierarchy—to a more general theory that includes other rela-
tions among objects, attributes or concepts. Some of the related questions are: if a
relation is given on objects (or attributes) can this relation be extended to a relation
among concepts (a concept relation)? If a relation is defined on objects is there a
relation on attributes which leads to the same concept relation? Which structures
evolve from concept relations? Can relations be inherited from superconcepts to sub-
concepts, and, if they can, is there a unique basis for a relation? Can concept relations
be studied by considering only object (or attribute) concepts? How do properties of
relations on objects affect concept relations? How can these relations be effectively
visualized? Basic answers to these questions are derived in this chapter for the re-
striction to binary relations. Unary relations (predicates) are discussed in Section
4.2. A generalization to other relations is yet to be achieved.

The main problem of extending relations among objects to concept relations is that
of quantification. It is always necessary to examine whether a concept relation holds
for all objects and attributes of the extent and intent of a concept or whether it
holds only for a subset. For example, does ‘birds fly’ mean that all objects of the
extent of ‘bird’ stand in ‘ability’-relation to ‘fly’? Most natural language statements
seem to have an implicit quantification, especially sentences such as ‘Women like
shopping.’ Is the interpretation of this sentence ‘All women like some shopping,’
(they do not like to shop in hardware stores, therefore they do not like ‘all’ shopping)
or ‘All prototypical women like some prototypical shopping,’ or ‘Prototypically, all
women like some shopping’? Such quantifications of verbs are studied by Woods
(1991) who separates a quantificational tag of a relation from its relational component
and investigates resulting subsumptions. Although he distinguishes between relations
among objects (instances) and among concepts, his modeling is not as detailed as
the modeling based on Formal Concept Analysis. He uses an equivalence similar to
(1) in our Definition 2.1. The detailed analysis of semantic relations by Lyons (1977)
is extended by Cruse (1986) who classifies the meronymy relation by considering
quantifications. Besides computer scientists (Woods) and linguists (Lyons and Cruse),
also mathematicians and philosophers are interested in subjects related to Relational
Concept Analysis. A mathematician, Brink (1993), studies relations among sets which
are generalized to relations among power sets. Relational Concept Analysis can be
interpreted as a special case of his research using extents of concepts instead of
arbitrary sets. On the other hand, Relational Concept Analysis is more general since
more quantifiers are considered. From a philosophical viewpoint natural language
phenomena are a basis for logical theories. Westerstahl (1989), summarizes research
on natural language quantifiers. We use some of his rules for the conversion among
quantifiers in Section 2.2. Since Woods’ paper lacks the details of conceptual modeling
which Formal Concept Analysis provides, since Cruse and Lyons do not formalize
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their ideas and Brink’s paper is more general and more specific in some ways, it
seems that Relational Concept Analysis is an advancement of its preceding theories.

2.1 The basic definitions

To begin with, all natural language quantifiers are taken into consideration. They
are denoted by their word form delimited by two vertical lines, for example ||all||.
Some can be abbreviated using mathematical notation, such as ||at least 1|| =: ||≥1||
and ||exactly 1|| =: ||1|| (for more details on natural language quantifiers see West-
erstahl (1989)). It turns out (see Section 2.2) that only very few of the quantifiers
are actually needed for concept relations, but we think it is useful to provide a
sufficiently general basic terminology. In what follows, only binary relations among
objects (i.e., r ⊆ G×G) are considered. Relations among attributes (i.e., r ⊆ M×M)
can be treated analogously (compare Definition 3.4). These relations are transferred
to concept relations, i.e., R ⊆ B(G, M, I) × B(G, M, I), according to the following
definitions.

Definition 2.1:

For a context (G, M, I), concepts c1, c2 ∈ B(G, M, I), a relation r ⊆ G × G, and
quantifiers Qi, 1 ≤ i ≤ 4, we define

c1 Rr[Q1, Q2; ] c2 :⇐⇒ Q1
g1∈Ext(c1)Q

2
g2∈Ext(c2) : g1rg2 (1)

c1 Rr[; Q3, Q4] c2 :⇐⇒ Q3
g2∈Ext(c2)Q

4
g1∈Ext(c1)

: g1rg2 (2)

c1 Rr[Q1, Q2; Q3, Q4] c2 :⇐⇒ c1 Rr[Q1, Q2; ] c2 and c1 Rr[; Q3, Q4] c2 (3)

r is called the relational component and [Q1, Q2; ], [; Q3, Q4], or [Q1, Q2; Q3, Q4] are
called the quantificational tag of a relation. If no ambiguities are possible, relational
component and quantificational tag can be omitted in the notation of the relation.

Depending on the quantifiers each relation r therefore leads to several different re-
lations Rr among concepts. The terms ‘quantificational tag’ and ‘relational compo-
nent’ are taken from Woods’ terminology. The formalization can best be understood
through an example: ‘all door-handles are parts of doors’ states a meronymy rela-
tion between door-handles and doors. More precisely it means that all objects that
belong to the extent of the concept ‘door-handle’ have an object in the extent of the
concept ‘door’ so that the meronymy relation holds between them. The variables in
equivalence (1) are for this example Q1 := ||all||, Q2 := ||≥ 1||, c1 is the concept
‘door-handle’, c2 is the concept ‘door’, and r is the relation ‘is part of’. Equivalence
(2) could be ‘there is at least one door which has a handle’, because ‘all doors have to
have handles’ is not true. Equivalence (3) is the conjunction of the first two. For the
door-handle example the quantifiers are Q1 := ||all||, Q2 := ||≥1||, Q3 := ||≥1|| and
Q4 := ||≥1||. Abbreviations are used for the more frequently used types of relations:

44



Definition 2.2:

‘Rr[||≥1||, ||≥1||; ||≥1||, ||≥1||]’ is abbreviated as Rr
0 and ‘Rr[||all||, Q2; ||all||, Q4]’ is

abbreviated as Rr
(Q4;Q2). The vertical lines ‘||’ can be left out for Q4 and Q2 in the

subscript of Rr
(Q4;Q2)

9.

Since Q1 = Q2 = ||≥1|| is equivalent to Q3 = Q4 = ||≥1||, we have Rr[||≥1||, ||≥1||; ]
= Rr[; ||≥ 1||, ||≥ 1||] = Rr

0. This is the minimal relation where at least one pair
of objects is in relation r to each other, because if Q1 or Q2 equals || ≥ 0||, then
it is not known whether there is a single pair of objects in relation r at all. Simi-
larly, Rr[||all||, ||all||; ] = Rr[; ||all||, ||all||] = Rr[||all||, ||all||; ||all||, ||all||]. It should be
noted that not all arbitrary combinations of quantifiers can be chosen because some
would lead to empty relations. For example, Rr[||all||, ||n||; ||all||, ||all||] is empty if
Ext(c2) 6= n. And there are implications among the quantifiers, for example for
n ≥ 1, from Rr[||all||, ||≥ n||; ] follows Rr[||all||, ||≥ (n − 1)||; ] from which follows
Rr[|| all||, || ≥ 1||; ]. From Rr[||≥ n||, ||all||; ] follows Rr[; ||all||, ||≥ n||], and so on.
In many applications Q1 and Q3 equal ||all||, therefore the abbreviation Rr

(Q4;Q2) is

useful.10 The relation Rr
(≥1;≥1) seems to be the most important one for many appli-

cations. Brink (1993) calls it the ‘power relation’ in his modeling of relations among
power sets.

0

R (    1;    0)> >

R (    0;    1)> >

R (    1;    1)> >

R (    1;    0)> >

R

wheel of machine

wheel

vehicle

sledbikecar
wheel of vehicle prot. car prot. bike prot. sled

prot. wheel of carprot. wheel of mach.
prot. wheel of bike

wheeled vehicle

Figure 2.1: Different meronymy relations

Figure 2.1 shows a denotative lattice whose formal objects are prototypes and whose
formal attributes are omitted in the diagram. Some of the concepts are denoted by
disambiguated words which are surrounded by ellipses in the picture. A relation r is

9The inversion of the quantifiers in (Q4; Q2) is in analogy to the labeling of relations with ‘one-
to-many’, ‘many-to-many’, and so on in the Entity-Relationship Model (see Section 4.4).

10Besides its applications to the modeling of lexical databases, the formalization can also be used
in other disciplines to describe functions Rr

(≥0;1), bijections Rr
(1;1), or Cartesian products Rr

(all;all).
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defined as a part-whole relation between prototypical wheel of vehicle and prototypi-
cal car and bike. The dotted lines represent conceptual meronymy relations which are
derived from r. Similarly to the subconcept-superconcept relation, the dotted lines
denote a directional relation where the part is below the whole. But, for example, if
writing the part below the whole would contradict the conceptual ordering, arrows
can be added to the dotted lines to indicate the direction. As an example of how to
read the relations in the diagram, the relation R(≥1;≥0) between ‘wheel’ and ‘wheeled
vehicle’ means that wheels can be parts of wheeled vehicles, but each wheeled ve-
hicle has at least one wheel. Only between ‘wheel of vehicle’ and ‘wheeled vehicle’
does the stronger relation R(≥1;≥1) hold; wheels of vehicles must be parts of wheeled
vehicles and wheeled vehicles must have wheels. Both concepts are lexicalized in the
picture, but seem to be non-lexicalized in most dictionaries. As Section 2.3 shows,
it is a problem to implement semantic relations in lexical databases without redun-
dancy if the concepts among which the stronger relations hold are not lexicalized.
Figure 2.1 demonstrates that relations are sometimes inherited11 between sub- and
superconcepts. This is examined in more detail in Section 2.3.

2.2 Characteristics of concept relations

As it is either possible to define a relation on objects, or on attributes, or on con-
cepts themselves, it is useful to develop a characterization of a concept relation R by
considering its structure on the concepts only and ignoring the relational component
r. Then investigations can be made to determine which relations on objects or at-
tributes lead to the same concept relation, or, if the concept relation is given, which
could be the relational components for it. For simplification this is only demonstrated
for relations according to equivalence (1) which lead to the definition of relations of
characteristic [Q5, Q6; ]. Definitions and theorems hold similarly for equivalence (2)
(relations of characteristic [; Q5, Q6]). There is no characteristic defined for relations
according to equivalence (3), because such relations are characterized by stating
whether they have a characteristic [Q5, Q6; ] and a characteristic [; Q5, Q6]. A rela-
tion Rr[Q1, Q2; ] either fulfills the following equivalence using two quantifiers Q5 and
Q6 for all concepts in B(G, M, I) or there exist no quantifiers Q5 and Q6 so that they
fulfill the equivalence. Although the characterization is defined for any concept rela-
tion independent of r and [Q1, Q2; ], the rest of this section uses this characterization
only to classify certain relations Rr[Q1, Q2; ] into four characteristics.

Definition 2.3:

A relation R ⊆ B(G, M, I) × B(G, M, I) for which there exist quantifiers Q5, Q6 so
that for all c1, c2 ∈ B(G, M, I)

c1 R c2 ⇐⇒ Q5
c11≤c1

Q6
c21≤c2

: c11 R c21 (4)

11Generalization from subconcepts to superconcepts is also called ‘inheritance’ for the rest of this
paper.
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holds is called of characteristic [Q5, Q6; ]. Relations of characteristic [; Q5, Q6] are
defined analogously.

Relations can have several characteristics because some quantifiers entail other quan-
tifiers and therefore several quantifiers can fulfill (4). If there are no quantifiers Q5

and Q6 for a relation R that fulfill (4), the relation does not have a characteristic. Re-
lations without characteristics usually do not have simple rules for their inheritance
between subconcepts and superconcepts. For example, ||half|| cannot in general be
inherited because it is not possible to predict the differences in number of objects
between a concept and its sub- or superconcept. A large number of natural language
quantifiers is of the kind ||at least all but one||, ||at least one||, ||less than five|| and
so on. Figure 2.2 shows the formal expressions (with natural number n > 0) of these
quantifiers (see Westerstahl (1989), pp. 69-71). The quantifiers on the opposite ends
of the lines are logical negations of each other (Q and ¬Q; Qd := ¬Q¬ and Q¬), such
as ‘every’ and ‘not every’, ‘more or equal one’ and ‘less than one’ in the case n = 1.
The quantifiers on the same horizontal level are inner negations of each other, i.e.
the expressions behind the quantifier are negations of each other, such as ‘every man
snores’ versus ‘every man does not snore’, which equals ‘no man snores’. The quanti-
fiers on the same vertical level are dual to each other. The basic rules for conversion
among quantifiers follow from Qd = ¬Q¬ = (¬Q)¬ = ¬(Q¬) and from the fact that
double negation means no negation at all, i.e. ¬¬Q = Q = Q¬¬ (see Westerstahl
(1986)).

�
�

@
@

@
@

�
�

||<n||

||≤(all− n)||

||>(all− n)||

||≥n||

Q Q¬

Qd ¬Q

Figure 2.2: A quantifier, its dual, negation and inner negation

The following theorem demonstrates that although different quantifiers can be used
on the object level, on the conceptual level basically only the ||all||- and ||≥ 1||-
quantifiers are needed. Therefore exactly four characteristics of relations [Q5, Q6; ]
and analogously four characteristics of relations [; Q5, Q6] exist if quantifiers according
to Figure 2.2 are involved.

Theorem 2.1:
The relations Rr[Q1, Q2; ] with quantifiers Q1, Q2 of the form || > (all − n)||,
||≤ (all − n)||, ||> m||, or ||≤ m|| (n and m are natural numbers larger 0) are of
four characteristics according to Table 2.1.
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Q1 Q2 Q5 Q6

||>(all− n)|| ||>(all−m)|| ||all|| ||all||
||>(all− n)|| ||≥m|| ||all|| ||≥1||

||≥n|| ||>(all−m)|| ||≥1|| ||all||
||≥n|| ||≥m|| ||≥1|| ||≥1||

||>(all− n)|| ||<m|| ||all|| ||all||
||>(all− n)|| ||≤(all−m)|| ||all|| ||≥1||

||≥n|| ||<m|| ||≥1|| ||all||
||≥n|| ||≤(all−m)|| ||≥1|| ||≥1||
||<n|| ||≤(all−m)|| ||all|| ||all||
||<n|| ||<m|| ||all|| ||≥1||

||≤(all− n)|| ||≤(all−m)|| ||≥1|| ||all||
||≤(all− n)|| ||<m|| ||≥1|| ||≥1||

||<n|| ||≥m|| ||all|| ||all||
||<n|| ||>(all−m)|| ||all|| ||≥1||

||≤(all− n)|| ||≥m|| ||≥1|| ||all||
||≤(all− n)|| ||>(all−m)|| ||≥1|| ||≥1||

Table 2.1: Characteristics of relations

The proof (see Proof 112) uses the conversion of quantifiers in a way that only the
first four rows of Table 2.1 have to be proved, the others follow from conversion. The
first eight rows are even equal to the last eight rows. For example, ‘all rabbits fear all
snakes’ (row 1 with n = m = 1) is equal to ‘no rabbit fears less than all snakes’ (row
9 with n = m = 1). An interpretation of Table 2.1 is that if a specific number occurs
on the object level, for example, all hands have five fingers, it does not occur on the
conceptual level. For a concept ‘hand’ there is one concept ‘finger’ so that each object
of ‘hand’ has five parts among the objects of ‘finger’; and not: for a concept ‘hand’
there exist five concepts ‘finger’ with that property. A linguistic example where this
is even reflected in the language is that ‘having two shoes’ can also be expressed as
‘having a pair of shoes’. Some other quantifications can be achieved by intersection
of the relations, for example, the ||n||-quantifier (as Q1 or Q2) results from a relation
that fulfills the || ≤ n||-quantifier and the || ≥ n||-quantifier. It seems that these
relations have two characteristics, a characteristic [Q5, Q6; ] for ||≤ n|| and another
characteristic [Q5, Q6; ] for ||≥n||, but not a single characteristic which entails these
two characteristics in the way ||n|| entails ||≤n|| and ||≥n||, because these relations
cannot in general be inherited in the lattice. For example, the statement that each
hand has exactly five parts in the concept ‘finger’ is not inherited to all hypernyms
of ‘finger’ because in the hypernym ‘body parts’ the hand may have ‘palm’ as an
additional part. It is also not inherited to hyponyms of ‘finger’ because ‘hand’ has
only one part in the hyponym ‘ring finger’. Relations should therefore be modeled
using ||≥n||- and ||≤n||-quantifiers, for example, ‘each hand has at least five parts’,
and ‘each hand has less than or equal to five fingers’.

12The proofs of this chapter are in Section 2.10.
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2.3 Bases of concept relations

An ||all||-quantifier for Q5 or Q6 in equivalence (4) obviously causes inheritance of
the relation to all subconcepts, whereas an ||≥ 1||-quantifier causes inheritance to
all superconcepts. For example, if all bird feathers are part of birds then all sparrow
feathers (as special bird feathers) are parts of birds and all bird feathers are parts
of animals (a generalization of bird). For an implementation in a lexical database it
is desirable to deduce all the relations which follow from inheritance from a set of
rules and a basis for each relation. The Theorem 2.2 (see Proof 2) shows that bases
exist and are unique for the four characteristics of concept relations from Table 2.1.
Relations of characteristic [; Q5, Q6] can be treated analogously.

Definition 2.4:

A basis R of a relation R of characteristic [||all||, ||≥ 1||; ] is defined as a relation
R ⊆ B(G, M, I)× B(G, M, I) satisfying, for all c1, c2 ∈ B(G, M, I),

a) c1Rc2 ⇐⇒ ∃(c◦
1
,c◦

2
)∈R : (c1 ≤ c◦1 and c2 ≥ c◦2) (5)

and b) R has the minimal number of elements among all relations that fulfill equiv-
alence (5). Bases of characteristics [||all||, ||all||; ], [||≥1||, ||≥1||; ] and [||≥1||, ||all||; ]
are defined respectively using (c1 ≤ c◦1 and c2 ≤ c◦2), (c1 ≥ c◦1 and c2 ≥ c◦2), and
(c1 ≥ c◦1 and c2 ≤ c◦2).

Theorem 2.2:

Bases as defined in Definition 2.4 are unique. A relation R ⊆ B(G, M, I)×B(G, M, I)
is of characteristic [||all||, ||≥1||; ], [||all||, ||all||; ], [||≥1||, ||≥1||; ] or [||≥1||, ||all||; ] if
and only if it has a basis according to Definition 2.4.

Equivalence (5) uses the fact that ||all||-quantifiers cause inheritance to subconcepts
(therefore c1 ≤ c◦1) and ||≥1||-quantifiers cause inheritance to superconcepts (there-
fore c2 ≥ c◦2). A basis can thus be used to define a characteristic of a concept relation
which is defined on the concepts and not derived from a relation among objects or
attributes. Theorem 2.3 (see Proof 3) shows that for all concept relations (of cer-
tain characteristics and not defined on objects or attributes) an equivalent context
with an equivalent concept relation exists, i.e. a context whose reduced version is
isomorphic to the reduced version of the first context (Ganter & Wille, 1996) and
whose concept relation holds among the corresponding concepts, so that its concept
relation is derived from a relation on objects or attributes. That means that if for
some reason a concept relation is given in a line diagram, objects and attributes can
(so to say) be added to or deleted from the diagram so that the concept relation
can be derived from relations among objects or attributes. If it is impossible to add
or delete objects or attributes and still keep the same line diagram, then concept
relations cannot always be derived from relations among objects or attributes (if the
common characteristics of relations according to Table 2.1 are considered). It follows
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that if a concept relation is derived from a relation on objects there does not have
to exist a relation on attributes which leads to the same concept relation.

Theorem 2.3:

A concept relation of a characteristic according to Table 2.1 cannot always be derived
from a relation among objects or attributes. But for each concept lattice on which a
concept relation R1 of characteristic [||all||, ||≥1||; ], [||all||, ||all||; ], [||≥1||, ||≥1||; ] or
[||≥1||, ||all||; ] is defined there exists an equivalent context with an equivalent concept
relation (i.e. with order-preserving isomorphism ism : B(G1, M1, I1) → B(G2, M2, I2)
between the concepts satisfying c1R1c2 ⇐⇒ ism(c1)R2ism(c2)) such that the concept
relation R2 can be derived from a relation r on objects or attributes according to
Definition 2.1.

> >(    0;    1)
wheel

wheel of machine wheel of vehicle

car bike sled

wheeled vehicle

vehicle

prot. wheel of machine prot. wheel of car

prot. car prot. bike prot. sled

prot. wheel of bike

R

Figure 2.3: A basis for meronymy relations

Figure 2.3 shows the same example as Figure 2.1. The boldface dotted line is the
basis for the relations R(≥0;≥1), which is represented by the dotted lines in the figure,
and R(≥1;≥0), which is not shown in the figure. There is no basis for a relation R(≥1;≥1)

which always must be represented as an intersection of relations R(≥0;≥1) and R(≥1;≥0).
All the concepts in the lower ellipsis are in relation R(≥0;≥1) to all concepts in the
upper ellipsis. ‘Wheel of vehicle’ is the most general part of ‘wheeled vehicle’ which
is itself the most specific whole of ‘wheel of vehicle’. A basis can consist of several
elements, which means a concept can have several most general parts or most specific
wholes. For example, ‘wheeled vehicle’ could also have ‘engine of wheeled vehicle’
as another most general part. Of course, then there could be a concept ‘parts of
wheeled vehicle’ generated which would be a hypernym for ‘engine of wheeled vehicle’
and ‘wheel of vehicle’. Neither ‘engine of wheeled vehicle’ nor ‘wheel of vehicle’ nor

50



‘parts of wheeled vehicle’ are usually lexicalized. The sets of objects which such
concepts would have as extents can be generated, but adding their concepts to a
lattice might be complicated. For example, if c1R(≥0;≥1)c2 then c1R(≥1;≥1)c

∗
1 with

Ext(c∗1) := {g2 ∈ Ext(c2) | ∃g1∈Ext(c1) : g1rg2}. But for c1R(≥0;≥2)c2 it is only possible
to generate c1R(≥1;≥2)c

∗
1 with Ext(c∗1) := {g2 ∈ Ext(c2) | ∃g1∈Ext(c1) : g1rg2} because

c1R(≥2;≥2)c
∗
1 may be contradictory. For the implementation of meronymy it is helpful

if these concepts exist, therefore the question arises whether and how non-lexicalized
concepts should be added to a lexical database to ease the implementation of semantic
relations — especially, since a verbal description of these non-lexicalized concepts is
easy to obtain using ‘part of...’, ‘most general part of ...’, and so on.

As another example the hyponymy relation itself is considered. Each lattice can be
interpreted as a relation of characteristic [||all||, ||≥1||; ], if r is the equality relation
‘=’ (see Section 2.4) because each object g of a concept has at least one object (itself)
in any superconcept so that it is equal to it (g = g). Each concept is then a maximal
hyponym and a minimal hypernym of itself. Therefore the basis of the hyponymy
relation is {(c, c) | c ∈ B(G, M, I)}.

An application of Theorem 2.3 is the determination of an underlying denotative con-
text for a lexical denotative context. Semantic relations are usually defined on words
(denotative word concepts or synsets) while the underlying denotata are not known.
For example, ‘wheels are parts of bikes’ might be implemented in a lexical denotative
context, but the sets of all prototypical bikes and wheels exist only implicitly. There-
fore the question arises as to which axioms must be fulfilled so that a relation among
disambiguated words actually could be caused by a relation among denotata (see
Section 2.7). Since not all concepts are lexicalized a relation among denotative word
concepts is usually only a subset of a concept relation. It is not necessarily a basis
but a generating system. Lemma 2.1 (see Proof 4a) demonstrates how a generating
system is used to generate a relation.

Definition 2.5:
A relation R ⊆ B(G, M, I)× B(G, M, I) satisfying, for all (c◦1, c

◦
2) ∈ R,

c◦1Rc◦2 ⇐⇒ ∃(c◦
11

,c◦
21

)∈R : (c◦1 ≤ c◦11 and c◦2 ≥ c◦21) (6)

is called a generating system of a relation of characteristic [||all||, ||≥ 1||; ]. (Anal-
ogously c◦1 ≤ c◦11 and c◦2 ≤ c◦21, c◦1 ≥ c◦11 and c◦2 ≥ c◦21, and c◦1 ≥ c◦11 and c◦2 ≤ c◦21
for the other characteristics, [||all||, ||all||; ], [||≥ 1||, ||≥ 1||; ], and [||≥ 1||, ||all||; ],
respectively.)

Lemma 2.1:
A generating system of characteristic [||all||, ||≥1||; ] generates a relation of the same
characteristic if it is extended to all c1, c2 ∈ B(G, M, I) according to

c1Rc2 :⇐⇒ ∃(c◦
1
,c◦

2
)∈R : (c1 ≤ c◦1 and c2 ≥ c◦2) (7)
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(Analogously for the other characteristics.)

Therefore any concept relation on lexicalized concepts which fulfills equivalence (6)
can be extended to a relation on all concepts. But as Theorem 2.3 shows this does
not ensure that there is an underlying relation on denotata with quantifiers Q1 and
Q2 that would lead to the same concept relation of characteristic [Q5, Q6; ]. Part
of the problem is the fact that equivalence (7) is not the only possible method for
generalizing a relation on a subset of concepts to a relation on the complete lattice
because equivalence (8) can also be used.

c1 R c2 :⇐⇒ Q5
c◦
1
≤c1

Q6
c◦
2
≤c2

: c◦1 R c◦2 (8)

A relation generated according to equivalence (7) is a subset of a relation generated
according to equivalence (8) from the same generating system. For example, if Q5 and
Q6 are ||all||-quantifiers then according to equivalence (8) the relation is also inherited
to superconcepts if all the basis elements under them are in relation to each other.
This is not the case for equivalence (7). On the other hand, both equivalences generate
relations of the same characteristic using the same generating system. In lexical
denotative contexts the relations are usually defined on the subset of lexicalized
concepts. Which equivalence, (7) or (8), has to be used to generate a relation on the
complete lattice, assuming a relation with certain quantifiers Q1 and Q2 arises from
the denotata (according to Definition 2.1), depends on Q1 and Q2. Theorem 2.4 (see
Proof 4b) demonstrates that equivalence (8) has to be used under certain conditions
instead of equivalence (7) if Q1 = Q2 = ||all|| or Q1 = Q2 = ||≥ 1|| is assumed, but
not if Q1 = ||all|| and Q2 = ||<n|| is assumed. Section 2.7 provides further axioms
and conditions which ensure that a relation among words could represent a relation
of a certain characteristic among denotata.

Theorem 2.4:
1) If a relation on the set {γg | g ∈ G} of object concepts is a generating system of
characteristic [Q5, Q6; ], and the relation is extended to a relation R on all concepts
according to equivalence (8), and
a) Q5 = Q6 = ||all|| holds then R is a relation Rr[Q1, Q2; ] with Q1 = Q2 = ||all||
and g1rg2 :⇐⇒ ∃c1∈B(G,M,I)∃c2∈B(G,M,I) : (g1 ∈ Ext(c1) and g2 ∈ Ext(c2) and c1Rc2).
b) Q5 = Q6 = ||≥ 1|| holds then R is a relation Rr[Q1, Q2; ] with Q1 = Q2 = ||≥ 1||
and g1rg2 :⇐⇒ ∀c1∈B(G,M,I)∀c2∈B(G,M,I) : (g1 ∈ Ext(c1) and g2 ∈ Ext(c2) and c1Rc2).
2) If a relation on the set {γg | g ∈ G} of object concepts is a generating system of
characteristic [Q5, Q6; ] and if Q1 = ||all|| and Q2 = ||<n|| then equivalence (8) does
not have to be true for Q5 = Q6 = ||all||.

2.4 Special properties of relations

So far not much has been said about the relational component r. Some mathematical
properties of relations on objects or attributes or of concept relations are important
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for applications. An example is the long standing discussion as to whether meronymy
is transitive or not (see Winston et al. (1987) for a summary). Our solution to this
question is to distinguish between properties of relations that can be proved mathe-
matically and axioms that cannot be proved. This distinction facilitates a scientific
discussion about features at a basic level. For example, if r is transitive then Rr

(≥0;≥1)

is also transitive. Therefore the question is not whether conceptual meronymy is tran-
sitive, but whether meronymy is transitive on the object level. It would not be correct
to say that the meronymy relation between specific door-handles, specific doors, and
specific houses is transitive, but that the corresponding meronymy relation Rr

(≥0;≥1)

between the concepts ‘door-handle’, ‘door’, and ‘house’ is not. If r is just the local
containment, such as ‘door-handle physically attached to door’, ‘door physically con-
tained in house’ then ‘door-handle physically contained in house’ holds. As Iris et
al. (1988) point out, the meronymy relation often involves a function between the
part and the whole instead of being the pure physical containment. It follows from
our theory that this function must already exist on the object level and not only on
the conceptual level, such as ‘this specific door-handle is a part of and has a func-
tion for this specific door’, and so on. Relational Concept Analysis can therefore not
produce general statements (such as ‘a certain relation is transitive’) about semantic
relations, but it helps to show precisely where mathematical properties should be
defined, what consequences they have, and whether there are certain contradictions
within a linguistic modeling.

Table 2.2 summarizes (see Proof 5) some of the cases in which a special mathematical
property13 of the relational component causes properties of the resulting concept
relations Rr. The properties marked with ‘1’ hold only if the extents of the concepts
are not empty. The properties marked with ‘2’ require that the extents are finite.

r Rr
(≥0;≥1) Rr

0 Rr

(all;all) Rr
(≥1;≥1)

reflexive refl. refl.1 —– refl.
symmetric —– sym. sym. sym.
transitive trns. —– trns. trns.
irreflexive —– —– irrefl. —–

irrefl. and trns. irrefl.2, trns. —– irrefl., trns. irrefl.2, trns.
refl., sym., trns. refl., trns. refl., sym. sym., trns. refl., sym., trns.

irrefl., acycl. irrefl.2, acycl.2 —– irrefl., acycl. irrefl.2, acycl.2

Table 2.2: Properties of relations

Furthermore the following statements can be concluded:

13A relation r is reflexive if ∀g∈G : grg, irreflexive if ∀g∈G : ¬grg, symmetric if ∀g1,g2∈G : g1rg2 =⇒
g2rg1, transitive if ∀g1,g2,g3∈G : g1rg2, g2rg3 =⇒ g1rg3, antisymmetric if ∀g1,g2∈G : g1rg2, g2rg1 =⇒
g1 = g2, acyclic if ∀n>1∀g1,g2,...gn∈G : g1rg2, g2rg3, . . . , gn−1rgn =⇒ ¬(gnrg1).
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[1] If Rr
(≥0;≥1) is reflexive then Rr

(≥0;≥1) includes the subconcept-superconcept re-
lation of the lattice, i.e. c1 ⊆ c2 =⇒ c1R

r
(≥0;≥1)c2. If Rr

(≥1;≥0) is reflexive then
c1 ⊇ c2 =⇒ c1R

r
(≥1;≥0)c2. If Rr

(all;all) is reflexive then all objects (of all concepts)

are in relation with all objects which is obviously a trivial case.

[2] If Rr
(≥0;≥1) is irreflexive then ‘c1 ⊇ c2 and c1R

r
(≥0;≥1)c2’ is not possible because

c2R
r
(≥0;≥1)c2 would follow. If Rr

(≥1;≥0) is irreflexive then ‘c1 ⊆ c2 and c1R
r
(≥1;≥0)c2’

is not possible.

[3] If a relation is irreflexive and transitive then it is also antisymmetric. Therefore,
if r is irreflexive and transitive and all sets of objects are finite, then Rr

(≥0;≥1),
Rr

(≥1;≥0), and Rr
(≥1;≥1) are also irreflexive, antisymmetric, and transitive.

[4] If r is antisymmetric and transitive and the extents of the concepts are fi-
nite then Rr

(≥0;≥1) does not have to be antisymmetric. Only (c1R
r
(≥0;≥1)c2 and

c2R
r
(≥0;≥1)c1) =⇒ Ext(c1) ∩ Ext(c2) 6= ∅ can be proved (see Proof 5).

The table shows that only Rr
(≥1;≥1) must be an equivalence relation (reflexive, sym-

metric, and transitive) if r is an equivalence relation. This may be another reason
why Rr

(≥1;≥1) seems to be important for many applications (compare Section 2.1). [1]
demonstrates that if, for example, Rr

(≥0;≥1) is an order relation (reflexive, antisym-
metric, and transitive) then it includes the subconcept-superconcept order relation.
Therefore if relations are to be modeled which have features of order relations but
do not include the subconcept-superconcept relation it is possible to study R\ ⊆
instead of R (according to [1]). [1] and [4] show that even if r is an order relation the
corresponding R’s do not have to be order relations. It is questionable whether some
types of meronymy are order relations. Meronymy is usually defined as an irreflexive
relation, but it could be asked whether it has the other features of order relations: an-
tisymmetry and transitivity. [4] shows that antisymmetry and transitivity of r do not
lead to strong properties of R, but [3] demonstrates that irreflexivity, antisymmetry,
and transitivity of r can be useful. Therefore transitive meronymy can be modeled
according to [3]. If meronymy is not transitive, it usually should at least be acyclic
which is a weaker property than antisymmetry and transitivity which together entail
acyclicity. Meronymy is usually acyclic because if a is a part of b and b is part of c

then c should not be a part of a. Since acyclicity entails antisymmetry, intransitive
meronymy can be modeled as a relation with an irreflexive and acyclic relational
component r (see Section 3.4). If r is the equality relation ‘=’ then R=

(≥0;≥1) is an
order relation, R=

(≥1;≥0) is the dual order, and R=
(≥1;≥1) is an equivalence relation, and

the following equivalences hold (see Proof 6a).

c1R
=
(≥0;≥1)c2 ⇐⇒ c1 ≤ c2 (9)

c1R
=
(≥1;≥0)c2 ⇐⇒ c1 ≥ c2 (10)

c1R
=
0 c2 ⇐⇒ Ext(c1) ∩ Ext(c2) 6= ∅ (11)

c1R
=
(≥1;≥1)c2 ⇐⇒ c1 = c2 (12)
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Thus the conceptual ordering itself can be derived from a relation among objects.
Transitivity that involves different relations can also be investigated (see Proof 6b):
If r is transitive and all extents are not empty then

c1Ric2 and c2R(all;all)c3 =⇒ c1Ric3 for i ∈ {0, (≥ 0;≥ 1), (≥ 1;≥ 0)} (13)

c1R(all;all)c2 and c2Ric3 =⇒ c1Ric3 for i ∈ {0, (≥ 0;≥ 1), (≥ 1;≥ 0)} (14)

c1Ric2 and c2R(≥0;≥1)c3 =⇒ c1R0c3 for i ∈ {0, (≥ 1;≥ 0)} (15)

c1R(≥1;≥0)c2 and c2R0c3 =⇒ c1R0c3 (16)

An example for (16) with i = (≥ 1;≥ 0), c1 = ‘eggs’, c2 = ‘pasta’, c3 = ‘lasagne’ is:
if all pasta contains some eggs and some pasta is part of some lasagne then it follows
that some eggs are part of some lasagne. Some common sense ‘implications’, such as
‘some spices contain pesticides’ and ‘some food contains spices’ therefore ‘some food
contains pesticides’ cannot be dealt with although they seem to be very likely to be
true in many applications (see Section 2.9).

2.5 Auto- and polyrelations

It is possible to have polyrelations (i.e. several relations between two concepts) or
autorelations (i.e. a relation of a concept with itself). Concept autorelations must
be distinguished from lexical autorelations which involve a relation between two
different polysemous senses of the same word form. For example, the two senses
of agonize in WordNet, {agonize, agonise, cause agony in} and {agonize, agonise,
suffer anguish}, are in lexical autorelation ‘cause’ to each other. Thus agonizing
causes agonizing. Lexical autorelations have been studied by Horn (1989). Miller et
al. (1994) distinguish word-‘cousins’, -‘twins’, and -‘sisters’ which are systematically
occurring lexical polyrelations, such as when the same word is used for a language,
country and citizen of that country, or for a tree and the wood of that tree. It is
not known if there are any concept autorelations that are not trivial, such as ‘some
things are parts of some things.’ Concept polyrelations also often do not seem to
carry much information.

R (    1;    0)> >

R (    1;    0)> >

R 0

R (    0;    1)> >

R 0R (    0;    1)

musical strings

> >

water

ice

musical supplies

musical
instruments

water molecules

Figure 2.4: Concept polyrelations
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Examples of concept polyrelations between meronymy and hyponymy are: ‘ice’ is a
kind of ‘water’ and consists of ‘water’, or ‘musical strings’ are ‘musical supplies’ and
parts of ‘musical supplies’ at the same time (compare Figure 2.4). Usually, however,
it is possible to add additional concepts so that the bases of the relations are sin-
gle relations and the polyrelations follow from inheritance. In the examples, ‘water
molecules’ and ‘musical instruments’ can be added because ‘ice’ consists of ’water
molecules’ and is a kind of ‘water’ and ‘musical strings’ are parts of ‘musical instru-
ments’, which are a kind of ‘musical supplies.’

Figure 2.5 shows all types of concept polyrelations that can occur for irreflexive rela-
tions Rr

(≥1;≥0), Rr
(≥0;≥1), Rr

(≥1;≥1), and R0 (compare statement [2] in the last section).
The arrows in Figures 2.4 and 2.5 indicate the direction of the meronymy relations.
The R0 relations in the upper half of Figure 2.5 hold only if the extents of ‘bike’ and
‘wheel of vehicle’ are not empty. The figure illustrates that concept polyrelations for
meronymy and hyponymy occur if wholes are too general (all wheels of vehicles are
things and parts of things) or parts are too general (all bikes are things and have
things as parts). Therefore implementing relations as specifically as possible should
reduce polyrelations.

R (    0;    1)> >R (    1;    0)> >

R (    1;    0)> >

R 0R (    0;    1)> >
R 0

wheel of vehicle

thing

bike

thing

wheel 

vehicle

R (    0;    1)> >R 0

R 0

R 0 R (    1;    1)> >

R (    1;    0)> >

wheeled vehicle

thing

wheel

thing

vehicle

wheel of vehicle

Figure 2.5: The main types of concept polyrelations
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2.6 Graphical representations

It is often the case that the terminology of naming parts resembles the terminology of
naming wholes. For example (see Figure 2.614), body parts often have different names
related to the different names of animals. If the structures are completely regular it
is possible to use a representation technique similar to ‘nested line diagrams’ (Wille,
1984) where instead of parallel lines between two (or more) sets of concepts these
concepts are surrounded by a box or an ellipsis and a boldface line is drawn between
the boxes or ellipses. In Figure 2.6 all concepts in the lower ellipsis are in R(≥1;≥1)

relation to the concepts in the upper ellipsis that are in the corresponding positions,
such as ‘hoof’ and ‘hoofed animal’, and so on. The lower half of Figure 2.6 shows the
complete version. The sets of R(≥0;≥1) and R(≥1;≥0) relations, which are represented
by the dotted lines, form bases. Unfortunately the structures in lexical databases are
usually not that regular because often the corresponding concepts are not lexicalized
or because the relations are not very regularly implemented (compare Section 3.7).

R(    1;    1)> >

R(    1;    1)> >

R(    1;    1)> >

animal foot

hog, pig sheep canine feline

animal

hoofed animalhuman

hog, pig sheep canine

hoof foot trotter

human

hoof foot trotter

paw

paw

animal foot

animal

feline

hoofed animal

Figure 2.6: One representation of a nested line diagram

14Figures 2.6 and 2.7 show parts of a lattice instead of a complete lattice to indicate that they
are parts of a larger lexical database, such as WordNet. Attributes are omitted. Accidently most of
the figures of this chapter are tree hierarchies. This is due to the fact that WordNet is modeled as a
tree and some of the figures are based on WordNet. This does not mean that the theory only holds
for trees or that trees are preferable to other ordered sets.
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A different representation technique is chosen in Figure 2.7. Here the double boldface
dotted lines between the boxes mean that all concepts in the lower box stand in the
relation that labels the dotted line to all concepts in the upper box. A basis for the
relations consists of R(≥0;≥1) relations between ‘hour, time of day’ and ‘day of the
week’, ‘day’, ‘(any) day’, ‘yesterday’, ‘tomorrow’, and ‘today’; and R(≥1;≥0) relations
between ‘morning’, ‘noon’, and so on and ‘day, solar day’. The reason for this very
different situation compared to Figure 2.6 is that every day is a day of the week,
a day, a yesterday, a today, and a tomorrow at the same time (this is possible in a
lexical lattice, compare Section 1.8). Furthermore each day has all the parts, such
as morning, evening, night, and so on, whereas in Figure 2.6 no animal can be a
hog and a feline at the same time, and every animal has only one kind of feet. The
hyponymy relations in Figure 2.7 follow WordNet. The meronymy relations are not
as systematically implemented in WordNet as in the figure because as the figure
demonstrates their structure is relatively complicated.
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daytime
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nighttime
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day, solar day

(any) day day
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early-morning hour midnight

nighteveningnoon afternoon twilight

late-night hour

Figure 2.7: Another representation of a nested line diagram
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2.7 Relations among words as concept relations - the context

KD

In what follows, the application of Relational Concept Analysis to linguistic contexts
and lattices is further investigated. At first a denotative structure SD with deno-
tative context KD, defined as (D, AD, ID), for which disambiguated words w ∈ W

denominate concepts via the mapping dnt : W −→ B(KD) is considered. As Section
1.8 presents, B(KLD), defined as B(W, AD, ILD), is isomorphic to a join-preserving
sublattice of B(KD). Two viewpoints can be investigated. First, a denotative context
KD can be given and a lexical denotative context KLD can be derived from it. This is
investigated in this section. Or, second, a lexical denotative context can be given and
questions about an underlying hypothetical denotative context can be asked. This is
investigated in the next section. In the first case the following is defined:

Definition 2.6:
In a denotative structure SD, a semantic relation Rr ⊆ B(KD) × B(KD) is said to
be transferred to a semantic relation Sr ⊆ W ×W of the same characteristic among
disambiguated words if the following is defined

w1S
rw2 :⇐⇒ dnt(w1)R

rdnt(w2) (17)

Since in lexical denotative lattices object concepts correspond to denotative word
concepts, it follows from Definition 2.6 that w1S

rw2 ⇐⇒ γw1R
rγw2 holds for a

lexical denotative lattice derived from a denotative lattice. According to Section
2.3, Rr ⊆ C(W ) × C(W ) is a generating system (i.e. fulfills equivalence (6)) and
generates a subset of Rr ⊆ B(KD)× B(KD), but does not necessarily generate Rr ⊆
B(KD)×B(KD) itself. Axioms are required to ensure that the relation on denotative
word concepts generates the complete relation on the lattice. A first approach is to
define that only information about denotata which are non-lexicalized can be lost in
lexical denotative contexts in comparison to denotative contexts. That means that
at least all relations which are, so to say, above the level of lexicalization in B(KD)
should exist in B(KLD). This is true for the hyponymy relation because B(KLD) is
isomorphic to a join-preserving sublattice of B(KD). A sufficient condition for other
semantic relations is that the equations (7) or (8),

c1 Rr c2 :⇐⇒ ∃(dnt(w1),dnt(w2))∈Rr : (c1 ≤ dnt(w1) and c2 ≤ dnt(w2)) (18)

(analogously for the other characteristics) or

c1 Rr c2 :⇐⇒ Q5
dnt(w1)≤c1

Q6
dnt(w2)≤c2

: dnt(w1) Rr dnt(w2) (19)

are fulfilled at least for all c1, c2 ∈ B(KD) with ∃w1,w2∈W : (dnt(w1) ≤ c1 and dnt(w2)
≤ c2). The following axioms ensure for some characteristics of relations that the
relations in B(KD) can be generated from relations among denotative word concepts.
For practical applications it may not be necessary to consider these axioms at all.
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The extension of generating systems to relations on the whole lattice according to
equivalence (18) which ensures that they have the correct characteristic although
they may not be complete is often sufficient. The axioms in Theorems 2.5 and 2.6
present sufficient conditions for generating systems of some major types of relations
(see Proof 7 for Theorem 2.5 and Proof 8 for Theorem 2.6).

Theorem 2.5:

If in SD with KD := (D, AD, ID) the covering axiom

∀d∈D∀w∈W∃w1∈W : γd ≤ dnt(w1) ≤ (γd ∨ dnt(w)) (20)

holds then relations Rr[||all||, ||all||; ] and Rr[||≥1||, ||≥1||; ] fulfill equivalence (19).

The axiom ensures that a denotative concept that is a hypernym of a denotative word
concept and of an object concept of a denotata has a denotative word concept between
itself and the object concept of the denotata. In other words, the lowest concept at
which an object concept of a denotata reaches the level of lexicalization has to be a
denotative word concept. Or, below the level of lexicalization in a denotative lattice
nothing is known, but in the sublattice which is generated by the disambiguated
word concepts and therefore, so to say, above the level of lexicalization, everything
is known. Unfortunately, more axioms are needed if other relations Rr[Q1, Q2; ] are
to be dealt with, for example:

Theorem 2.6:

If the covering axiom and the axiom

dnt(w1)R
r
(≥0;≥1)c2 ⇐⇒ ∃dnt(w2)≤c2 : dnt(w1)R

r
(≥0;≥1)dnt(w2) (21)

hold then relations of characteristic [||all||, ||≥1||; ] fulfill equivalence (19).

This axiom ensures that the most specific whole of a relation Rr
(≥0;≥1) is lexicalized

(compare Section 2.3).

2.8 Semantic relations - the context KLD

In the last section the conditions of restricting a denotative lattice to a lexical denota-
tive lattice are investigated. In this section a lexical denotative context KLD is given
and nothing is explicitly known about an underlying denotative context KD. While
in KD the semantic relations are transferred to the words from the concepts, in KLD

semantic relations are defined on the words and then transferred to the concepts. If it
assumed that the axioms defined in the last section hold it follows that the semantic
relations in KLD could arise from corresponding relations in an underlying KD.
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Definition 2.7:

A relation s ⊆ W × W among disambiguated words is called a semantic relation
among disambiguated words if

γw1 = γw2 =⇒ ∀w∈W (w1sw ⇔ w2sw) and (wsw1 ⇔ wsw2), (22)

is fulfilled. The relation is a semantic relation of characteristic [Q5, Q6; ] if it fulfills
equivalence (4).
A semantic relation s among disambiguated words is transferred to a relation R

among concepts according to

γw1Rγw2 :⇐⇒ w1sw2 (23)

The condition (22) ensures that equivalence (23) is well-defined. If a relation on the
object concepts fulfills equivalence (6) it is a generating system of that characteristic
and generates a relation in the complete lattice according to (7) or (8). There are two
possible ways to handle synonymy and hyponymy. First, synonymy and hyponymy
can be defined according to

w1 syn w2 :⇐⇒ γw1 = γw2 (24)

w1 hyp w2 :⇐⇒ γw1 ≤ γw2. (25)

It follows that they are semantic relations because they fulfill equivalence (22). Sec-
ond, synonymy and hyponymy can be defined as semantic relations syn, hyp ⊆ W×W

with the properties that syn is an equivalence relation and hyp is an order relation
on the equivalence classes of syn. A concept lattice can be developed from them (see
Section 1.8) and with Rsem

W as family of semantic relations on disambiguated words
even

γw1 = γw2 ⇐⇒ ∀s∈Rsem
W
∀w∈W (w1sw ⇔ w2sw) and (wsw1 ⇔ wsw2), (26)

holds. In contrast to semantic relations lexical relations, such as antonymy, are defined
on disambiguated words, but cannot be generalized to relations among concepts. For
example, ‘nasty’ and ‘nice’ are antonyms in WordNet, but ‘awful’ which is a synonym
to ‘nasty’ is not an antonym of ‘nice’.

Definition 2.8:

Relations s ⊆ W ×W that do not fulfill condition (22) are called lexical relations.

2.9 Future research

Not all the problems of the implementation of semantic relations in lexical databases
are solved. Fischer (1991) has found some algorithms that check whether relations
are contradictory implemented. His solution is to implement consistency rules as
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conditions within the object-oriented programming language Smalltalk. He checks
the consistency of relations concerning inverse relations, implicit relations, circularity,
and other basic properties. It would be interesting to study whether his approach can
be extended to cover the inheritance and consistency rules that follow from Relational
Concept Analysis.

The extension of Relational Concept Analysis to unary relations (logical predicates),
such as ‘all objects of a concept have an attribute’, ‘most objects of a concept have
an attribute’, ‘some prototypical objects of a concept have an attribute’, and so on
is developed in Section 4.2. But ternary or other n-ary relations are left to future
research. The problem of higher n-ary relations is that the number of involved quan-
tifiers and therefore the number of characteristics of relations rises. Another open
problem is that in linguistic applications many relations use quantifiers of the kind
||almost all|| or ||all typical||. Therefore Relational Concept Analysis should be ex-
tended to incorporate prototype theory and heuristic rules.

2.10 Proofs

Proof 1: (Theorem 2.1)
First, the first four rows must be proved by showing two directions of the equivalence
(4).The direction ‘=⇒’ of the first row is true because c11 and c21 are subconcepts
of c1 and c2, respectively. The number of exceptions m and n cannot be larger for
subconcepts than for the original concepts. The direction ‘⇐=’ of the first row is true
because if anything is said about all subconcepts of a concept (including the concept)
it has to be true for the concept itself. The next three rows are similarly proved or
follow from the quantifier conversion rules: Q2 in row 1 and 2 are dual to each other,
so are Q6 in row 1 and 2, and so on.

Rows 5 to 8 are inner negations (such as Q1Q2 and Q1Q2¬) of rows 1 to 4. An inner
negation changes the relation r into its negation ¬r, but obviously the quantifiers
stay the same. Rows 9 to 16 are equal to rows 1 to 8, because Q1Q2 = Q1¬¬Q2 =
(Q1¬)(¬Q2).

Proof 2: (Theorem 2.2)
First, it has to be shown (‘=⇒’) that a relation of one of the four characteristics
always has a unique basis. Second, it has to be shown (‘⇐=’) that any relation
with basis according to Definition 2.4 is of such a characteristic. The proof is only
demonstrated for relations of characteristic [||all||, ||≥1||; ]. The other characteristics
are analogously.

To prove ‘=⇒’ the following construction yields a basis. If a relation R ⊆ B(G, M, I)×
B(G, M, I) is given then for concepts c1 and c2 we define (c1R)min := min≤{c ∈
B(G, M, I) | c1Rc} and (Rc2)max := max≤{c ∈ B(G, M, I) | cRc2} as sets of minimal
second components or maximal first components of the relations of a concept. A basis
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is then R := {(c1, c2) | c2 ∈ (c1R)min and c1 ∈ (Rc2)max}. It can be proved that R is
a basis of R: for c1Rc2 there are c3 and c4 with c4 ∈ (c1R)min, c3 ∈ (Rc4)max, c4 ≤ c2,
and c3 ≥ c1. Since R is of characteristic [||all||, ||≥ 1||; ], we also have c4 ∈ (c3R)min

and hence (c3, c4) ∈ R. R is minimal and unique because, if R1 is a basis of R and if
(c1, c2) ∈ R, then there must exist (c3, c4) ∈ R1 with c1 ≤ c3, c2 ≥ c4 which implies
c1 = c3, c2 = c4 and so R = R1.

For the other direction ‘⇐=’, it has to be shown that the generated relation is of
characteristic [||all||, || ≥ 1||; ] (equivalence (4)). If c1Rc2, there is a basis element
(c◦1, c

◦
2) with c1 ≤ c◦1 and c2 ≥ c◦2 according to equivalence (5) ‘=⇒’. From equivalence

(5) ‘⇐=’ it follows that ||all||c11≤c◦
1

: c11Rc◦2 and because of c1 ≤ c◦1 and c2 ≥ c◦2 follows
||all||c11≤c1 ||≥1||c21≤c2 : c11Rc21. On the other hand, if ||all||c11≤c1||≥1||c21≤c2 : c11Rc21

then || ≥ 1||c21≤c2 : c1Rc21 and equivalence (5) ‘=⇒’ implies that there is a basis
element (c◦1, c

◦
2) so that c1 ≤ c◦1 and c◦2 ≤ c21 ≤ c2. Equivalence (5) ‘⇐=’ entails

c1Rc2.

c

c1 c2

c3 c4

c8

c9 c10

jf g h i

lk

m

1 2 3 4 5 6

7 8

9 10 11 12 13
c5 c6 c7

b e da

Figure 2.8: A counter example

Proof 3: (Theorem 2.3)
The relation R of characteristic [||all||, ||≥ 1||; ] with basis {(c1, c2), (c1, c7), (c10, c9),
(c10, c8)} in Figure 2.8 cannot be generated from a relation among objects or at-
tributes. To prove this it is enough to demonstrate that the relation in the left half of
the lattice, {(c1, c2), (c1, c7)}, cannot be generated from a relation on objects. That
implies that the relation in the right half of the lattice, {(c10, c9), (c10, c8)}, cannot
be generated from a relation among attributes. If even parts of the relation cannot
be constructed from relations among objects or attributes the whole relation cannot
be constructed.

It has to be shown that it is not possible to find quantifiers Q1 and Q2 so that
equivalence (1) is fulfilled. According to Theorem 2.1 only Q1 = ||> (all − n)|| and
Q2 = ||≥m|| or Q1 = ||> (all − n)|| and Q2 = ||≤ (all − m)|| must be considered.
Since |Ext(c1)| = |Ext(c2)| = 2 only n, m ∈ {1, 2} are possible. (The quantifiers
Q1, Q2 ∈ {||≥0||, ||≤0||, ||≤all||, ||≥all||} can be ignored because they would involve
trivial relations with every concept as first or second component.)
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If Q2 = ||≥1|| then, for example, (c3, c5) or (c3, c6) would also have to be element of
R because (c3, c2) is always element of the relation and the condition in Q2 involves
only one element. On the other hand (c3, c5) or (c3, c6) cannot be generated from the
basis therefore they cannot be in R.
Q2 = ||≥2|| is impossible because then (c1, c7) could not be in R.
Q2 = ||≤(all− 1)|| is equivalent to Q2 = ||¬all|| therefore either ¬arb, ¬are, ¬crb, or
¬cre. It follows that either c3 or c4 is in relation with c5 or c6 which is a contradiction
to the basis.
Q2 = ||≤(all− 2)|| is impossible because then (c1, c7) could not be in R.

Now, the first half of the theorem has to be proved: Instead of B1(G1, M1, I1) a lattice
B2(G2, M2, I2) is chosen which has an equivalent context and concept relation, such
that all its concepts are object concepts of exactly one object (c ∈ B2(G2, M2, I2) =⇒
||1||g∈G2

: c = γg). The relation {(c11, c21), . . . , (c1n, c2m)} = R is given on B2(G, M, I)
as the equivalent to the concept relation on B1(G1, M1, I1). With g1rg2 :⇐⇒ ∃c11≥γg1

:
c11Rγg2 a relation is defined on the objects. Equivalence (1) has to be shown for
this relation (with Q1 = ||all|| and Q2 = ||≥ 1||) to prove the theorem. If c1Rc2

then ||all||g1∈Ext(c1)||≥ 1||g2∈Ext(c2) : g1rg2 follows from the definition of r. On the
other hand, if c1 := γg1, c2 := γg2, and ||all||g1∈Ext(c1)||≥ 1||g2∈Ext(c2) : g1rg2 then
||all||g1∈Ext(c1)||≥ 1||g2∈Ext(c2)||≥ 1||c11≥γg1

: c11Rγg2 follows from the definition of r.
From c11Rγg2 with c11 ≥ γg1 follows γg1Rγg2 because R is inherited to subconcepts
of the first component. It follows: c1Rc2.

Proof 4a: (Lemma 2.1)
The proof is only demonstrated for relations of characteristic [||all||; ||≥ 1||; ]. It has
to be shown that the generated relation is of characteristic [||all||; || ≥ 1||; ] using
equivalence (4). If c1Rc2 then equivalence (7) ‘=⇒’ entails c◦1Rc◦2 and equivalence (7)
‘⇐=’ entails ||all||c11≤c◦

1
: c11Rc2. It follows that ||all||c11≤c1 ||≥ 1||c21≤c2 : c11Rc21. If

||all||c11≤c1||≥1||c21≤c2 : c11Rc21 then ∃c21≤c2 : c1Rc21 and equivalence (7) ‘=⇒’ implies
c◦1Rc◦2 and equivalence (7) ‘⇐=’ implies c1Rc2.
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Figure 2.9: Another counter example
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Proof 4b: (Theorem 2.4)
The definition of r in a) and b) together with the fact that the characteristic of rela-
tion follows from Q1 and Q2 entails g1rg2 ⇐⇒ γg1R

rγg2 in both cases. Therefore in
a) and b) holds c1R

rc2 ⇐⇒ Q1
g1∈Ext(c1)

Q2
g2∈Ext(c2)

: g1rg2 ⇐⇒ Q1
g1∈Ext(c1)

Q2
g2∈Ext(c2)

:
γg1R

rγg2. This entails equivalence (8) for the generating system of object concepts
which proves the statement.

Equivalence (8) does not hold for the relation in Figure 2.9 if Q1 = ||all|| and Q2 =
||< 2|| because γa is in relation to γc and γd, and so on, but µ2 and µ5 are not in
relation to each other.

Proof 5: (Table 2.2)
Reflexivity:
If ∀g∈G : grg then ∀c∈B(G,M,I)∀g∈Ext(c) : grg and therefore Rr

(≥0;≥1) is reflexive. And if
the extent of c is not empty ∃g∈Ext(c) : grg holds which entails that Rr

0 is reflexive.

Symmetry:
If r is symmetric then Rr

0 and Rr

(all;all) are symmetric because ∀- and ∃-quantifiers are

interchangeable, respectively. From c1R
r
(≥0;≥1)c2 ⇐⇒ ∀g1∈Ext(c1)∃g2∈Ext(c2) : g1rg2 ⇐⇒

∀g1∈Ext(c1) ∃g2∈Ext(c2) : g2rg1 ⇐⇒ c2R
r
(≥1;≥0)c1 follows the symmetry of Rr

(≥1;≥1).

Transitivity:
If r is transitive then ∀g1∈Ext(c1)∃g2∈Ext(c2) : g1rg2 and ∀g2∈Ext(c2)∃g3∈Ext(c3) : g2rg3

implies ∀g1∈Ext(c1)∃g3∈Ext(c3) : g1rg3. Therefore Rr
(≥0;≥1) and Rr

(≥1;≥1) are transitive.
Similarly, Rr

(all;all) is transitive.

Irreflexivity:
If r is irreflexive then c1R

r

(all;all)c2 =⇒ Ext(c1) ∩ Ext(c2) = ∅.

Irreflexive and transitive:
If r is irreflexive, transitive and the extents of all concepts are finite then c1R

r
(≥0;≥1)c1

is impossible because the transitivity implies for any chain g1rg2; g2rg3; . . . ; gn−1rgn

that g1rgn. Since each object gi has to have a follower in such a chain and there are
only finitely many objects, girgi follows for at least one gi. This is in contradiction
to the irreflexivity of r.

Reflexive, symmetric, and transitive:
The statement follows from the other rows of the table.

Irreflexive and acyclic:
Similarly to the proof of ‘irreflexive and transitive’, the finiteness implies that if
Rr

(≥0;≥1) or Rr

(all;all) had a cycle or were not irreflexive, r could not be acyclic or

irreflexive.
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Antisymmetric and transitive:
Similarly to the proof of ‘irreflexive and transitive’, the finiteness implies for any
chain between objects of c1 and c2 that it contains a circle and therefore it follows
from the transitivity and antisymmetry of r that Ext(c1) and Ext(c2) must have an
object in common.

Proof 6a: ((9)-(12))
The first row is proved by c1R

=
(≥0;≥1)c2 ⇐⇒ ||all||g1∈Ext(c1)|| ≥ 1||g2∈Ext(c2) : g1 =

g2 ⇐⇒ Ext(c1) ⊆ Ext(c2). The others are analogously.

Proof 6b: ((13)-(16))
For example, c1R0c2 and c2R(all;all)c3 =⇒ ∃g1∈Ext(c1)∃g2∈Ext(c2) : g1rg2 and ∀g2∈Ext(c2)

∀g3∈Ext(c3) : g2rg3 =⇒ ∃g1∈Ext(c1)∃g3∈Ext(c3) : g1rg3. The other implications are proved
analogously.

Proof 7: (Theorem 2.5)
A relation Rr[||all||, ||all||; ] always fulfills ‘=⇒’ in equivalence (19). The other direc-
tion ‘⇐=’ was not fulfilled if c1 or c2 were object concepts, c1 = γd1 or c2 = γd2 and
not lexicalized. But for c1 = γd1 and ¬∃w∈W : c1 = dnt(w) the covering axiom entails
¬∃w∈W : c1 ≥ dnt(w) and therefore (19) is not applicable.
A relation Rr[||≥1||, ||≥1||; ] always fulfills ‘⇐=’ in equivalence (19). The other direc-
tion ‘=⇒’ was not fulfilled if there were non-lexicalized c1, c2 with ¬dnt(w1)R

rdnt(w2)
for all dnt(w1) < c1 and dnt(w2) < c2, d1rd2, γd1 ≤ c1, γd2 ≤ c2. This is impossible
according to the covering axiom.

Proof 8: (Theorem 2.6)
The axiom in equivalence (21) ensures that the direction ‘⇐=’ in equivalence (19) is
fulfilled. The other direction follows from the covering axiom similarly to Proof 7.

66



3 Semantic Relations

3.1 Introduction

Semantic relations are studied in many disciplines, such as linguistics, logic, cognitive
science, psychology, anthropology, and artificial intelligence. Furthermore they are ex-
plicitly or implicitly used in many applications, such as the storage of information in
classification systems, knowledge bases, bibliographic thesauri and natural language
thesauri (for example RIT). This chapter presents a summary of some current re-
search on and applications of semantic relations and develops formalizations based
on Relational Concept Analysis. Meronymy which seems to be a very important type
of relation in many applications but which is often not properly distinguished from
other relations and whose properties are often not agreed upon, is the main example
for this chapter. More detailed surveys on semantic relations in lexical databases in
general can be found in Evens (1988) and on semantic relations in anthropology,
linguistics, psychology, and computer science in Evens et al. (1980).

Semantic relations can be divided into four classes: conceptual orderings, meronymy,
functional relations, and contrast or sequence relations. Conceptual orderings (also
called ‘taxonomy’, ‘hyponymy’, ‘IS-A relation’, ‘class inclusion’, or ‘super-ordination’)
and meronymy (also called ‘part-whole relation’) form hierarchical orderings. They
occur in knowledge bases, thesauri, biological taxonomies, and library classification
systems. Conceptual ordering and meronymy are sometimes not properly distin-
guished because they are very similar in some cases (compare Winston et al. (1987)).
For example, should ‘algebra’ be called a part of mathematics or a kind of math-
ematics? Phenomena of natural languages, such as collective nouns, increase the
difficulties. For example, is a tomato a part of the groceries, or a kind of grocery?
Since the extent of a concept is a subset of the extent of a superconcept of that
concept, the conceptual ordering is in some way similar to some types of meronymy.
For example, the set of poodles is a subset of the set of dogs – the area of a city is
a subset of the area of a country. The same holds for the instance relation between
denotata and concepts and the membership meronymy. A denotatum is a ‘kind of’
the concept to which extent it belongs, for example, Fido is a kind of dog. But it
is also a member of the set of elements in the extent of that concept, for example,
Fido is a member of the class of dogs. Other relations such as synonymy (equality
in a conceptual hierarchy), coordination (between cohyponyms, which have the same
immediate superconcept), attribution (for example, the relation between objects and
attributes in a formal context), and some kinds of cross-references evolve from hierar-
chies. Fischer at al. (1996) call them ‘virtual relations’. Cross-references are related to
hierarchies if they are based on hierarchical relations, such as cross-references among
the cohyponyms of a concept.

Functional relations, such as the case relations of a verb (agent, instrument, object,
and so on) do not form hierarchical orderings. They are usually visualized as semantic
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nets, conceptual graphs (Sowa, 1984) or Entity-Relationship-Diagrams. Contrast re-
lations (such as antonymy) are binary sequences (such as yesterday, today, tomorrow)
which are linear orderings. If a conceptual ordering is represented as a vertical hierar-
chy, contrast and sequence relations are usually horizontal chains among cohyponyms.
For example, yesterday, today, and tomorrow are hyponyms of ‘day’; a dwarf and a
giant are both hyponyms of ‘person from fairy tale’, and so on. The classification of
semantic relations into the four basic types, conceptual ordering, meronymy, contrast
and sequences, and functional relations, can be found in Dahlberg (1994) and DIN
32705 (1987). Non-hierarchical relations occur in the analyses of lexical fields, seman-
tic networks and in the Entity-Relationship-Model of database theory. Unfortunately
many of the existing relational models concentrate either on the hierarchical or on the
non-hierarchical relations. For example, before the invention of Relational Concept
Analysis, Formal Concept Analysis studied only hierarchical relations. On the other
hand, the Entity-Relationship-Model and conceptual graphs (Sowa, 1984) concen-
trate on non-hierarchical relations. In applications often both types of relations occur.
For example, library classification systems contain see-also-references and scientific
thesauri contain related terms (RT) as non-hierarchical relations. While hierarchical
relations in thesauri are usually organized within a consistent system which is re-
flected by a formal notation, the cross-references or related terms often do not seem
to be systematic. They can be coordinate terms, meronyms or others, and they are
usually not indicated by the formal notation of a classification system. It seems that
the question of how to integrate cross-references into a hierarchy as systematically
and consistently as possible is still not solved. In Formal Concept Analysis cross-
references often become redundant since lattice orderings allow several immediate
superconcepts. For example, in a tree hierarchy ‘biological applications of computer
science’ has to be classified either under biology or under computer science and a
cross-reference should be established. In a lattice any concept can have two or more
immediate superconcepts therefore this kind of cross-reference is redundant.

There are different approaches to the investigation of semantic relations. Linguists,
such as Lyons (1977) and Cruse (1986), study the lexicalization of semantic relations.
They define relations by ‘linguistic tests’. For example, Cruse defines the meronymy
relation as a relation which is expressed by ‘A Y has Xs/an X’ or ‘An X is part of
a Y ’ in the language. Different types of relations are then differentiated by different
expressions in the language. Psychologists, such as Chaffin & Herrmann (1988) design
psychological experiments to determine how and which relations are represented in
the mental lexicon. Logicians and philosophers, such as Dahlberg (1994), often try to
completely ignore the lexical component of semantic relations and investigate their
logical features on a conceptual level. Dahlberg, for example, states that Winston
et al.’s (1987) six types of meronymy relations differ only on the lexical level but
not on the conceptual. We think that it is essential to distinguish between concept
relations and their lexicalizations. Concept relations can often be modeled according
to mathematical or logical rules whereas lexicalizations of relations tend to have many
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exceptions. It seems to be a good approach to base a model on concept relations and
then to compare which concepts are lexicalized in which manner.

A distinction can be made as to whether a model includes only a few basic relations
and claims that other relations are based on these basic relations or whether it in-
cludes many relations. Models which use only basic relations, such as WordNet, seem
to be concept based, whereas models that use many relations, such as the Explanatory
Combinatorial Dictionary (according to Frawley, (1988)), which uses 53 relations, or
Rahmstorf’s analysis of German noun phrases (1983), which uses 38 relations, are
oriented in the lexical surface. Since our research concentrates on semantic relations
as concept relations (see Definition 3.1), our model claims that there are only a few
basic types of semantic relations based on a few basic properties. We define semantic
relations as relations in a denotative or connotative structure among the denotative
or connotative concepts or among the disambiguated words via their denotative or
connotative word concepts. In what follows only denotative structures are considered.
Connotative structures and lexical connotative or denotative contexts can be treated
similarly using the definitions from Section 2.8. The following definition is partly a
repetition of Definitions 2.6.

Definition 3.1:
In a denotative structure SD, the set of relations among concepts is denoted by RC .
The elements of RC are called semantic relations. A relation among disambiguated
words is called a lexical relation. A lexical relation Sr is called a semantic relation
(among disambiguated words) if it fulfills

w1S
rw2 ⇐⇒ dnt(w1)R

rdnt(w2)

for a semantic relation Rr and all w1, w2 ∈ W .

3.2 Conceptual ordering

The semantic relations, synonymy, hyponymy, cohyponymy, attribution, and disjunc-
tion follow directly from the relations in a concept lattice. Except for cohyponymy
which seems to be not equivalent to a semantic relation of the form Rr, the other
relations are of the form R= (compare Section 2.4). The relational tag ‘=’ denotes
the equality relation among denotata and represents a trivial case because each de-
notatum is equal only to itself. In contrast to meronymy, where a denotatum is in
relation to another denotatum, synonymy and so on entirely depend on the con-
ceptual ordering and not on non-trivial relations among denotata. The Definition
3.2 summarizes the relevant definitions from Sections 1.6 and 1.7 and in addition
explains cohyponymy and disjunction. Attribution could be defined between formal
objects and attributes using ι and ε. A distinction could be made between ‘classifying
attributes’ that a concept shares with its cohyponyms and differentiating attributes
that distinguish a concept from its superconcepts. Furthermore, while the attributes
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in AD are ‘essential attributes’ because they are needed for the classification in the
concept lattice, ‘accidental attributes’ (Dahlberg, 1994) can be added as unary re-
lations of the denotata (compare Section 4.2) which are not formal attributes of
the concept lattice. Essential attributes are inherited from concepts to subconcepts,
whereas accidental attributes are not inherited.

Definition 3.2:
In a denotative structure SD the following semantic relations are defined:
Synonymy: Two disambiguated words are called synonyms if they denote the same
concept, i.e.

w1 SYN w2 :⇐⇒ dnt(w1) = dnt(w2)(⇐⇒ dnt(w1)R
=
(≥1;≥1)dnt(w2))

Hyponymy: A disambiguated word is a hyponym of another word if the concept it
denotes is a subconcept of the concept the other word denotes, i.e.

w1 HYP w2 :⇐⇒ dnt(w1) ≤ dnt(w2)(⇐⇒ dnt(w1)R
=
(≥0;≥1)dnt(w2))

The hyponymy of a disambiguated word to a denotative concept (which does not
have to be lexicalized) is denoted by HYP?, i.e.

w1 HYP ?c :⇐⇒ dnt(w1) ≤ c

Hypernymy is the inverse relation of hyponymy.
Cohyponymy: Two disambiguated words are cohyponyms if they denote immediate
subconcepts15 of the same concept and are not synonyms, i.e.

w1 COH w2 :⇐⇒ ∃c∈B(KD) : dnt(w1) ≺ c and dnt(w2) ≺ c and ¬(w1 SYN w2)

Disjointness: Two disambiguated words are disjoint if they do not have a common
object in their extents, i.e.

w1 DISJ w2 :⇐⇒ dnt(w1)¬R=
0 dnt(w2)(⇐⇒ dnt(w1)R

6=

(all;all)dnt(w2))

The instance relation, which is not a semantic relation, is defined as

d INST w :⇐⇒ d ∈ Ext(dnt(w))

From the definition follows that synonymy is an equivalence relation (reflexive, sym-
metric, transitive) and hyponymy is an ordering relation (reflexive, antisymmetric,
transitive). Cohyponymy in a lattice is symmetric, but not transitive because, for
example, ‘piano’ can be a cohyponym to ‘chair’ and ‘violin’ if it is classified as fur-
niture and musical instrument, but ‘chair’ and ‘violin’ are not cohyponyms. (Cohy-
ponymy is transitive in a tree structure.) Cohyponyms are called ‘contrast sets’ by
Kay (1971). Disjointness is also a symmetric, but not transitive relation. Disjointness
is distinguished from antonymy: while antonymy is defined using the intents of con-
cepts, disjointness is defined using the extents of concepts. Hyponymy among verbs
is sometimes called troponymy (Miller et al., 1990).

15≺ denotes the relation ‘<’ between a concept and its immediate superconcept.
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3.3 Meronymy: Lesniewski’s mereology

Meronymy serves as the main example for this chapter. This section and Section 3.5
provide information on existing theories of meronymy and explain why these existing
theories may be replaced or improved by methods of Relational Concept Analysis.
Section 3.4 formally defines meronymy and shows an application of the formal defini-
tion that is continued in Section 3.6 to obtain a classification of meronymy. Finally,
Section 3.7 investigates how Relational Concept Analysis can facilitate avoiding ir-
regularities in implementations of relations in lexical databases. The philosopher
Lesniewski (Luschei (1962)) developed a theory called ‘mereology’ which is based on
part-whole relations instead of set theory. A summary of mereology can be found in
Rescher (1975). Mereology has never been applied to natural language research for
possible reasons that are explained in this section. Influenced by Russel’s paradoxon
of set theory, Lesniewski developed mereology which uses instead of the element rela-
tion of set theory the part-whole relation as basic relation. His terminology includes
‘part’, ‘disjoint’ (two items do not share a part), and ‘sum’, in analogy to the terms
‘element’, ‘disjoint’ (having no intersection), and ‘union’ of set theory. Linguists only
criticize his axiom of transitivity (his part-whole relation is transitive), which accord-
ing to their opinion does not hold for all kinds of meronymy (see below). It seems
that also some of Lesniewski’s other axioms and theorems are not valid for natural
language meronymy. He states that an item is uniquely defined by its parts. This
may be true for the membership meronymy (a tennis club consists exactly of its
members), but it does not hold for the so called ‘functional meronymy’ (Iris et al.
1988), because an item which consists of all parts of a car does not have to be a car.
It could be assembled in a completely unusual manner and be a work of art in a
museum. According to Lesniewski the sum of two items is always another item. This
is at least not valid for the lexicalization of geographical meronymy relations. For
example, the geographical unit that contains two cities is usually a county, state or
continent, and so on. That means that the mereological sum of two cities should con-
tain more than just the areas of the cities. Furthermore this kind of sum would not be
unique. Different pairs of cities can be part of the same geographical unit. Therefore
it seems that Lesniewski’s sum should be replaced by a closure operator which yields
the next smallest unit that contains the parts. But even using a closure operator, the
sum need not be uniquely described by its parts in geographical meronymy relations
because, for example, Monaco is a city and a country at the same time. Therefore
the area of the city Monaco equals the area of the country Monaco, but the country
has the city as a part, hence has more parts than the city. Mereology seems to be
appropriate for portion-mass meronymy, for example every two lumps of mud can
be joined to a bigger lump of mud. But even this is not reflected in the language:
there are no distinct words for ‘small lump of mud’ and ‘bigger lump of mud’. For
these reasons Lesniewski’s mereology does not seem to be a good modeling of natural
language meronymy relations.
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3.4 A formal definition of meronymy

Although meronymy is a hierarchical relation it should not be modeled as a mathe-
matical lattice. One obvious reason for not modeling meronymy as a concept lattice
using denotata as formal objects and attributes and meronymy as the relation be-
tween them is that, for example, the formal attributes ‘ketchup’ and ‘pizza’ share
the formal objects ‘sugar’ and ‘salt’ as parts. Therefore a formal concept ‘salt, sugar’
would evolve, but ‘salt, sugar’ is usually only a mixture and not a denotative word
concept itself in the English language. Such a concept lattice would therefore provide
an embedding of meronymy, but not all concepts would have useful interpretations.
A better solution is therefore to use part-whole relations as attributes, such as ‘has
handle as part’ which would, for example, differentiate a cup from a glass. A third
option is to interpret meronymy as an additional relation besides the conceptual
ordering. This is done in the following definition.

Definition 3.3:
In a denotative structure SD the semantic relation meronymy is defined as follows:
Two disambiguated words are in meronymy relation if their denotative word concepts
are in relation Rm

(Q4;Q2) where m is a meronymy relation among denotata, i.e.

w1 MERm
(Q4;Q2)w2 :⇐⇒ dnt(w1)R

m
(Q4;Q2)dnt(w2)

and the meronymy relation m is irreflexive, antisymmetric, and acyclic.

From the definition follows that MERm
(≥0;≥1), MERm

(≥1;≥0), and MERm
(≥1;≥1) are also

irreflexive, antisymmetric, and acyclic (see Section 2.4). And if m is transitive, then
MERm

(≥0;≥1), MERm
(≥1;≥0), and MERm

(≥1;≥1) are also transitive (Section 2.4). In contrast
to antonymy whose types are distinguished by the relational components (Section
3.8), many types of meronymy differ in their quantificational tags which can there-
fore be used for a rough classification of meronymy. For example, the four kinds of
meronymy relations described by Cruse (1986) consist of combinations of the basic
quantifiers || ≥ 1||, || ≥ 0||, and ||all||:

• MERm
0 : facultative-facultative16; for example, a child can be a member of a

tennis-club, but not all children are members of tennis-clubs, nor do all tennis-
clubs have children as members.

• MERm
(≥0;≥1): canonical-facultative; for example, all door-handles are parts of

doors, but not all doors have to have handles.

• MERm
(≥1;≥0): facultative-canonical; for example, all ice-cubes consist of water,

but not all water is frozen.

• MERm
(≥1;≥1): canonical-canonical; for example, each bird feather is part of a

bird, and each bird has feathers.

16Cruse uses ‘facultative’ and ‘canonical’ instead of Lyons’ (1977) ‘contingent’ and ‘necessary’.
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3.5 Transitivity and inheritance of meronymy

The question of transitivity of meronymy has been widely discussed (Winston et al.,
1987). Logicians often claim that meronymy is transitive because they use models
such as Lesniewski’s mereology which are defined to be transitive. Some linguists
(Iris et al. 1988) decide that certain types of meronymy are transitive whereas others
are not transitive. Functional meronymy is according to them not transitive. We are
not going to investigate which types of meronymy might be transitive and which
are not, but from Relational Concept Analysis follows that if m is transitive then
certain meronymy relations Rm are also transitive. This means that if the relation
m is transitive on the denotative level, then meronymy is also transitive on the
conceptual level for these kinds of meronymy relations. As the pure spatial inclusion
on the object level seems to be always transitive (a particular door-handle is part of a
particular door which is part of a particular house), it follows that meronymy is often
not a conceptual extension of the spatial inclusion, but that it has other features, such
as, for example, functional dependencies, which are not transitive. (The concept of
‘door-handle’ does not include ‘in general having a function for a house.’) Relational
Concept Analysis facilitates a more detailed analysis of where features occur (on
the denotative or on the conceptual level) and can help to show inconsistencies in
a linguistic model, such as to assume m is the spatial inclusion for an intransitive
relation MERm

(≥0;≥1) is contradictory.

Winston et al. (1987) claim to have discovered the solution of the transitivity question
for meronymy. The rest of this paragraph, however, shows that their theory is not
entirely correct. They claim that syllogisms of the kind ‘a is part of b, b is member of c

therefore a is part of c’ are valid if the three meronymy relations are of the same type.
The example syllogism is not valid because ‘part of’ and ‘member of’ are not the same
type of meronymy relation. Furthermore ‘mixed inclusion relation syllogisms are valid
if and only if the conclusion expresses the lowest relation appearing in the premises,
where the ordering of relations is: class inclusion > meronymy > spatial inclusion’.
For example, wings are parts of birds, birds are creatures, therefore wings are parts of
creatures (and not: wings are creatures). We think it is pure coincidence that Winston
et al.’s statement is actually true for all the examples they use in their paper. All
syllogisms contain implicit quantifications and from these quantifications, rules follow
which seem to be more substantial than Winston et al.’s theory. A sentence ‘a is part
of b’ is usually interpreted as ‘all a are parts of some b’ since it can be observed in
general that the subject of a sentence tends to imply the ||all||-quantifier whereas
other parts of the sentence tend to imply || ≥ 1||-quantifiers if quantifiers are not
explicitly mentioned. From ‘all a’s are parts of some b and b’s are c’s’ follows ‘all a’s
are parts of some c’ according to the rule that a || ≥ 1||-quantifier causes inheritance
to superconcepts (Section 2.3). Winston et al.’s other examples are of the following
types:
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(All) pies are desserts. All a are b.
(All) desserts are partly sugar. All b have a part c.
(All) pies are partly sugar. All a have a part c.

Wings are part of birds. Socrates is in Athens. All a are related to some b.
Birds are creatures. Athens is a city. All b are c.
Wings are part of creatures. Socrates is in a city. All a are related to some c.

The wheel is part of the bike. All a are part of b.
The bike is in the garage. All b are in c.
The wheel is in the garage. All a are in c.

The first syllogism is true because ||all||-quantifiers cause inheritance to subconcepts.
The second syllogism is the type we already discussed. Individual concepts, i.e. con-
cepts which have only one denotatum, always fulfill the ||all||-quantifier. The third
is based on the assumption that this type of meronymy implies spatial inclusion
(which is not true in general) and that spatial inclusion is transitive. The follow-
ing counter examples show that Winston et al.’s examples are correct, but their
reasoning is faulty. First, since they use the meronymy relation in both directions
as ’is part of’ and ’is partly’, their theory should also be valid if class inclusion is
used in both directions. ‘Includes’ expresses the inverse relation to the class inclu-
sion ‘is a’. Therefore from Winston et al.’s statement would follow: Creatures include
birds, birds have wings, therefore all creatures have wings. This is obviously not true.
Second, other quantifiers can be used: All pies are kinds of desserts, some kinds of
desserts are partly honey, therefore all pies are partly honey. This is also not true.
Third, a meronymy relation that does not entail spatial inclusion can be used: The
character is part of the book, the book is in the garage, therefore the character is in
the garage? Obviously, analysing the implicit quantifications and using the rules for
inheritance among relations according to Relational Concept Analysis (Chapter 2)
provides a better solution to the transitivity questions than Winston et al.s theory.

3.6 The classification of meronymy

Classifications of semantic relations are usually based on qualitatively different at-
tributes of the relations. The most detailed classifications of meronymy are probably
achieved by Winston et al. (1987), Chaffin & Herrmann (1988), and Chaffin (1992).
They use the method of ‘Relation Elements’ which characterizes a relation in terms
of its defining features, the so-called ‘relation elements’. Certain dependencies among
relation elements can be expressed and statistical methods allow a computation of
the similarity of meronymy relations to each other. Using Formal Concept Analysis,
the meronymy relations can be taken as formal objects, and the relation elements
as formal attributes of a formal context. The dependencies among relation elements
and the similarity of the types of meronymy relations can be studied in a concept
lattice. Typical relation elements are: functional (there is a function between part
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and whole), homogeneous (the parts are similar to each other), homeomerous (the
parts are similar to each other and to the whole according to their substance, such
as a piece of cake and a cake. ‘Homeomerous’ is a special case of ‘homogeneous’),
separable (the part can be separated from the whole), attached (the part is attached
to the whole, a special case of separability), locative or spatial inclusion (the part is
‘in’ the whole), social (the parts form the whole according to a social agreement), and
so on. Cruse (1986) distinguishes between constituents and ingredients. These can
also be used as relation elements. Constituents are parts that are found by analysing
the whole (in German: Inhaltsstoffe), whereas ingredients are used to synthesize the
whole (in German: Zutaten). Collections are usually synthesized, for example, a forest
would not exist without trees.

possess.
funct. object
collection
group
ingredient
funct. location
organization
measure

part. attach. compon.prop. homog. soci. locat.

place

partive

possession

property

homogen.

component

measure

functional object

locative

inclusion,

ingredient

place

collection

group
organization

functional location

attached

social

inclus.

Figure 3.1: Chaffin & Herrmann’s classification of meronymy

Chaffin & Herrmann (1988) base their classifications not primarily on lexicalizations
of the meronymy relation (such as ‘is partly’ expresses a substance meronymy), but
on psychological experiments, such as letting a person classify, compare, or distin-
guish several tokens of meronymy (and other) relations. Their experiments result
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in several similar classifications. In Figure 3.1 the classification of meronymy via
relation elements which Chaffin & Herrmann base on Stasio et al. is modeled as
a concept lattice. Prototypical relation elements of meronymy relations seem to be
‘inclusion’, ‘partive’, ‘property’, and ‘possession’. ‘Place’ and ‘measure’ do not ap-
pear to be typical meronymy relations. In the lattice the typical meronymy relations
are subconcepts of the attribute concept of ‘property’. ‘Place’ and ‘measure’ are not
subconcepts of this concept. ’Group’ is a social ‘collection’, since it shares all at-
tributes with ‘collection’ and has the differentiating attribute ‘social’. It seems that
‘functional object’ and ‘functional location’ are not properly distinguished. Maybe a
relation element ‘functional’ should be added and the element ‘locative’ should be
assigned to ‘functional location’. A similar classification is given in Winston et al.
(1987) as: The most dominant meronymy relation is the component/integral object or
functional object meronymy (Iris et al. (1988) call this ‘functional component’), such
as ‘cup/handle’. The other classes are feature/activity (such as ‘bride/wedding’),
member/collection (‘tree/forest’), place/area (‘Everglades/Florida’), portion/mass
(‘slice/pie’), stuff/mass (‘lettuce/salad’), and stuff/object (‘aluminium/bike’). Ac-
cording to Chaffin & Herrmann (1988) these basic classes can be further divided, for
example, member/collection meronymy includes unit/organization (‘delegation/UN’)
and member/group (‘cow/herd’) meronymy.

It seems that a universal classification based on relation elements cannot be obtained
because it seems to be difficult for linguists to agree upon a common set of rela-
tion elements. For example, the classifications in the papers by Winston, Chaffin &
Herrmann (1987) and Chaffin & Herrmann (1988) contradict each other. Accord-
ing to Winston at al. the place/area meronymy is homeomerous, but according to
Chaffin & Herrmann it is not homogeneous, therefore it cannot be homeomerous.
An experimental analysis using all tokens of part-whole relations from WordNet and
assigning relation elements to them (instead of assigning the relation elements to
types of relations) could lead to a more convincing classification and could be the
basis for future research. As an example for such an approach, in this paper the
substance meronymy which has only about 400 tokens in WordNet is analysed using
relation elements (see below). Classifications of meronymy relations based on quan-
tificational differences (or quantificational tags) as provided by Relational Concept
Analysis appear to be easier to be constructed than classifications based on qualita-
tive differences (which are contained in the relational component m). The rest of this
section shows that these quantificational differences often coincide with qualitative
differences, although they are more elaborated in some cases and less detailed in other
cases. It seems that quantificational tags have the advantage of being less subjective
because it is easier to decide which quantifiers a relation needs instead of deciding
which relational component it has. Figure 3.2 shows an attempt to develop such a
classification of the meronymy relation. The table is probably not complete, but five
major classes can be observed. In addition to the quantifiers from chapter 2, the
||some1||-quantifier is used for mass nouns and denotes the singular sense of ‘some’,
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such as ‘there is some bread’ to distinguish it from the plural sense, such as ‘there
are some people’. In German these two senses of ‘some’ have different translations:
‘some1’ means ‘etwas’ whereas ‘some2’ means ‘einige’. In English this distinction is
reflected in ‘much’ and ‘many’. || ≤ some1|| means there are none or some, but never
all (‘a pizza contains some meat or no meat at all’). ||some1|| means there are ex-
actly some, and not none or all. || ≥ some1|| means there are some or all, but this
quantifier is not used for meronymy. ||several|| denotes the analogous quantifiers for
a collection of objects, such as ‘a book contains several chapters’. The objects of a
||several||-quantifier are always interchangeable, therefore this quantifier corresponds
to Chaffin & Herrmann’s (1988) relation element ‘homogeneous’. It should be noted
that all examples are always to be understood in a prototypical sense: ‘a prototypical
sausage contains some meat’, and so on.

relational component tag example

stuff/object (some1; ≤1) meat/sausage
(some1; 1) sausage meat/sausage
(≤ some1; ≤1) meat/pizza

stuff/mass (some1; ≤ some1) salt/seawater
(some1; some1) sea salt/seawater
(≤ some1; ≤ some1) sage/tea
(≤ some1; some1) sausage meat/food

element/mass (several; ≤ some1) body cells/skin
(several; some1) body cells/body tissue

element/mass; portion/mass (≤ several; some1) skin cells/body tissue;
slice/bread

member/set (several; ≤1) tree/forest
(several; ≥0) human/citizenship

member/set; section/object (several; 1) human/sex; chapter/book
unit/measure; memb./set; obj./obj. (n; 1) sec./hour; card/deck;

finger/hand

object/object (≥0; 1) refrigerator/kitchen
(1; ≥0) melody/song

obj./obj; individual/individual (1; 1) punch line/joke;
Princeton/NJ

Figure 3.2: A classification of meronymy based on quantificational tags

The distinctions within the five classes show that the quantificational tags depend
on the level of abstraction of the concepts. For example, some meat can be contained
in a sausage, whereas ‘sausage’ meat (at least prototypically) has to be contained
in a sausage, otherwise it would not be ‘sausage’ meat. Substituting a general part
or whole by a more specific part or whole often changes the quantifiers. For a basic
classification only the type of quantifier is essential, such as ||some|| or ||several||,
and not the modifier, such as ‘at least’, ‘exactly’, or ‘at most’. Although meronymy
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relations with different relational components can share the same tags, each class of
relational components tends to prefer a prototypical tag. Therefore the tags can be
used as the basis of a classification. For example, for the object/object meronymy,
MERm

(≥0;1) seems to be the dominant form, because each object is part of exactly
one whole. For example, a door-handle belongs to exactly one door. MERm

(≥0;n), for
n > 1, is also possible, but this quantifier is rare. For example, any section of a
border belongs to exactly two countries. A prototypical feature of the member/set
meronymy is that MERm

(≥0;>1) is possible, because, for example, a human is usually
a member of different sets (clubs, family, cultures) at the same time. For individual
concepts MERm

(1;1) always holds, because the ||all||-quantifier becomes trivial if the
extent of a concept has only one element. Our classification coincides partly with the
classifications of Chaffin & Herrmann (1988), for example as already mentioned, the
||several||-quantifier corresponds to the relation element ‘homogeneous’. The relation
element ‘attached’ requires that the whole is a physical object (quantifiers ‘||1||’
or ‘||n||’), and the relation element ‘separable’ does not apply to parts that use
the ||some||-quantifier. Obviously, for the object/object relations, the classification
based on quantification seems to be the most unsatisfactory. For example, Chaffin
& Herrmann’s component/integral object, topological part/object, time/time, and
place/area are all subsumed under object/object.

artific.

artificial constituents homogeneous

naturalingredients

function

flour/dough
flour/bread

dough/cake
wheat/flour

air/wind
water/ice

ice/ice cube

gold/dental gold

form,state,motion

caffeine/coffee cell/tissue
chalk/limestone

cell/tissue

ice/ice cube
water/ice
air/wind
caff./coffee
flour/dough
flour/bread
wheat/flour
dough/cake
gold/dental g.

natur. const. ingred. funct.hom. f,st,mo

chalk/limest.

Figure 3.3: A classification of substance meronymy
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Iris et al., (1988) develop four models of meronymy which also partly coincide with
our classification. Their first model is the functional component meronymy which
corresponds to our first and fifth class. Their second model is the member/collection
meronymy which is contained in our fourth class. Their third model is the segmented
whole meronymy which partly coincides with our second and third class. Their fourth
model, the subset/set relation seems to be not a proper meronymy relation. Word-
Net (Miller et al., 1990) distinguishes only three types of meronymy relations: sub-
stance, membership, and part. Our first three classes are subsumed under substance
meronymy, our fourth class is WordNet’s membership meronymy, and our fifth class
is their is-part-of meronymy. Under a pragmatic viewpoint the WordNet classification
is efficient since there are less tokens in WordNet that would belong to our first three
classes (about 400 tokens), than tokens in the last class alone (about 5000 tokens).
The WordNet numbers can be misleading because the is-part-of meronymy contains
many geographical proper names and the membership meronymy (about 12000 to-
kens) contains the biological classification (a species is a member of its genus), which
would usually not be considered a meronymy relation.

As mentioned above, we studied a classification based on relational components for
the substance meronymy in WordNet. All tokens of this meronymy relation in Word-
Net have been automatically grouped according to their hypernyms and then each
group was manually assigned relation elements. Substance meronymy exclusively oc-
curs among concrete nouns. It dominates in the areas: building materials, fabrics,
chemical products, human body, nutrition, medicine, weather and geological forma-
tions. The following relation elements seem useful: natural (the whole is a natural
item), artificial (the whole is manufactured), homogeneous, change of form, state,
or motion (the whole is the same substance as its part but has a different form,
such as ‘ice/ice cube’, is in a different state, such as ‘water molecules/ice’, or mo-
tion, ‘air/wind’), change in function (the whole is the same substance as its part but
has a different function, ‘ascorbic acid/vitamin C’), ingredients, and constituents.
After grouping the tokens of the substance meronymy in WordNet according to
these relation elements, one token that seemed to be prototypical was chosen for
each group. These tokens are the formal objects of the formal context and the con-
cept lattice in Figure 3.3. Six basic classes can be observed. The parts of natural
wholes are always constituents. Parts can be found by analysing the whole (class 1:
chalk/limestone, cell/tissue) or they are distinguished from the whole by a change of
form, state or motion (class 2). Parts of artificial wholes can be constituents (class
3: caffeine/coffee) or they are ingredients. Ingredients are non-homogeneous (class 4:
flour/bread, flour/dough) or homogeneous. Homogeneous parts of artificial wholes
are distinguished from the whole by a change in function (class 5: gold/dental gold),
or a change in form, state or motion (class 6). The classifications in Figures 3.2
and 3.3 can be combined. For example, the elements of class 1 in Figure 3.3 are
element/mass- (cell/tissue) and stuff/mass-meronymy relations (chalk/limestone). It
is not claimed that the classification in Figure 3.3 is complete. Obviously, other au-
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thors could select other relation elements or tokens of the meronymy relation. But
using Formal Concept Analysis seems to be a very efficient method of obtaining,
graphically representing, and comparing classifications.

The other two meronymy relations in WordNet have not been analysed as detailed as
the substance meronymy. The membership meronymy in WordNet contains mainly
humans (or other individuals) and their groups (members of religious groups, coun-
tries, organizations, families, geographical areas, committees). Furthermore, it con-
tains sections of institutions (‘school/university’), collections of similar items for some
purpose (‘card/deck’, ‘restaurant/chain’, ‘star/constellation’), geographical or politi-
cal units (‘Belgium/NATO’) and social units as members of associations. The is-part-
of meronymy in WordNet consists of time units (‘month/year’), geographical or po-
litical units (‘city/country’), body parts or parts of plants, other units (‘cent/dollar’),
and others.

3.7 Irregularities in the implementation of meronymy in

WordNet

Properties of semantic relations can be used to identify irregularities in the rela-
tions of a lexical database or thesaurus. Rules can be implemented as a computer
program and then be automatically tested. Fischer (1991) has written a Smalltalk
program system to check some mathematical properties of semantic relations, such
as inverse relations, circularity, implicit relations, and so on. It would be possible to
implement the rules which are implied by Relational Concept Analysis in a similar
way, but this has not been undertaken so far. Some irregularities can be corrected
automatically. For example, if Fischer’s software detects a relation which should be
symmetric, but is implemented as a unidirectional pointer, the other direction can
simply be added. In many cases, however, it is not possible to correct automatically
the irregularities. Irregularities can be detected, but then lexicographers are needed to
decide which concepts or relations have to be added or changed to solve the problems.
Three examples of the meronymy relation in WordNet are chosen to demonstrate the
possibilities of Relational Concept Analysis. WordNet distinguishes only ‘part-of’,
‘substance-of’, and ‘member-of’ meronymy, but not the quantificational tags, such as
‘MERm

0 ’ and ‘MERm
(≥1;≥1)’. But because comparatively few meronymy relations are

implemented in WordNet, a first approach assumes all of them to be of the strongest
kind, MERm

(≥1;≥1). If irregularities are found, they can be changed to weaker kinds
such as ‘MERm

(≥1;≥0)’ or be otherwise repaired.

Figures 3.4, 3.6, and 3.8 show parts of the WordNet1.5 lattice, Figures 3.5, 3.7, and
3.9 demonstrate how they could be improved. The examples from WordNet are not
complete, because some relations are omitted and only one or two representative
words are selected for each synset. The dotted lines represent meronymy, the others
hyponymy. In the first example in Figure 3.4 ‘human body MERm

(≥1;≥1) person’ holds,
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therefore a child’s body and an adult body must also be part of a person. ‘Flesh’,
which does not follow that pattern, seems to be misplaced as a subconcept to ‘hu-
man body’. If, furthermore, ‘female body MERm

(≥1;≥1) female’ holds, then, likewise, a
woman has to have a female body; therefore ‘woman’s body’ should be a subconcept
of ‘female body.’ It should be noted, though, that not all of the changes from Figure
3.4 to Figure 3.5 can be derived from the theoretical properties of the relations only.
In most cases additional semantic knowledge is needed that can be provided only by
lexicographers.

person,

child

female maleadultjuvenile

woman man

flesh child’s
body

adult
body body

female male
body

woman’s
body

man’s
body

human
body

individual

Figure 3.4: An example of the part-of relation in WordNet

body

juvenile
body

adult
body

female
body

male
body

body
human

juvenile

child woman man

malefemaleadult

person,
individual

child’s
body

woman’s
body

man’s

Figure 3.5: A modified version of the example in Figure 3.4

The reason for the irregularities in Figure 3.6 is probably the polysemy of ‘extremity’,
because ‘hand’ and ‘foot’ are subconcepts of the wrong ‘extremity’ concept. The
‘extremity’ concept with the meaning ‘hand and foot’ should be a subconcept of
‘extremity, appendage’. The meronymy relation is irregular in this example, because,
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human
body part

structure

external
body part extremity,

appendage

animal

leg

toenailfingernail

nail

finger toe

digit

hand foot

extremity

arm

limb

Figure 3.6: Another example of the part-of relation in WordNet

appendage

body part

structure

fingernail toenail

nail

finger toe

digit

hand foot

extremity

arm leg

limb

human

animal

external
body part extremity,

Figure 3.7: A modified version of the example in Figure 3.6
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weather

shape, form

round shape

drop

snowflake

ice

glacier

dewdrop crystal

precipitation

dew

secretion

body fluid

body substance

substance

liquid

fluid

solid water,H2O

artefact

block

structure

ice cube

ice mass

geological formation

natural object

natural

tear

teardrop

phenomenon toy

ball

snowball
cube

snow
snow,snowfall

Figure 3.8: An example of the substance-of relation in WordNet

nat. phen.
liquid

teardrop

drop

shape, form

round shape

dewdrop

water molecules

ice crystal

icesnowflake

crystal snow,snowfall
snow

dew

tear

glacier

ice cube

ice mass

geological formation

natural object

block

cubesnowballprecipitation

water,H2O

weather
ball

toy

small solid

body fluid

body substance

substance

fluid solid

artefact

structure

shape secretion

Figure 3.9: A modified version of the example in Figure 3.8
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if there are no digits other than fingers or toes, and if all fingers or toes are part
of some concepts that have a common hypernym ‘extremity’, then digits should be
part of extremities. The corrected version in Figure 3.7 shows a more regular pattern
than Figure 3.6.

The last example of the substance-of meronymy in Figure 3.8 probably needs improve-
ment, too, as all those fluids should have a common substance – water molecules (see
Figure 3.9). Similarly a distinction should be made between ice crystals and ice. This
example does not contain further irregularities, but it shows a certain pattern that
can be discovered by comparing the hypernyms at different levels. It seems to be
a property of the substance meronymy that shapeless and shaped forms alternate.
Drops and crystals are small shapes. On the next level, ‘tear’, ‘dew’, ‘snow’ and
‘ice’ are shapeless nouns with the hypernym ‘substance’. On the last level, objects
are shaped again, but this time the shape is formed by humans (‘artefact’) or nature
(‘geological formation’). This last example shows how meronymy and hyponymy may
form a regular pattern in some areas of the vocabulary. A more complete analysis of
all the relations in WordNet will probably reveal more patterns, which can ultimately
be formalized as properties of special relations.

3.8 Other semantic relations: contrast and sequences

Contrast relations are special cases of sequence relations because they are ‘binary se-
quences’, i.e. sequences of two elements. Chaffin & Herrmann (1988) distinguish the
following kinds of contrast relations: contrary or gradable antonyms (‘tiny/huge’, a
tiny item cannot be huge and vice versa, but there are steps in-between: ‘tiny/small/-
medium/large/huge’); contradictory antonyms (‘dead/alive’, an item is either dead or
alive); asymmetric contraries (‘dry/wet’, contraries that are not equally distant from
the medium value); incompatible terms (‘happy/morbid’; an item cannot be happy
and morbid at the same time, but happy and morbid are not usually considered to be
antonyms); reverse terms (‘attack/defend’); directional terms (‘front/back’); pseudo-
antonyms (‘popular/shy’); and ‘terms with similar attributes’ (‘painting/movie’).
Miller at al. (1990) emphasize that antonymy is a lexical relation and not a con-
cept relation, because it is a relation between disambiguated words which does not
have to hold for the synonyms of the words. For example, ‘happy/sad’ are antonyms
but not ‘happy/melancholic’. Miller et al. call the concept relation that holds be-
tween the synonyms of antonyms ‘indirect antonymy’. Antonymy is clearly a relation
among disambiguated words (a lexical relation) and not among words (a morpho-
lexical relation), because the different polysemous senses of a word can correspond
to different antonyms. In Roget’s International Thesaurus (RIT, 1962) adjacent cat-
egories are often antonymous to each other showing the different antonyms of a word
according to its polysemous senses. For example, the categories: ‘665 misuse’, ‘666
disuse’, ‘667 uselessness’ are antonyms to different senses of ‘663 use’, such as 665
use right/use wrong, 666 continue using/stop using, 667 useful/useless. Contrasts
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can occur in all parts of speech, but verbs and prepositions represent a special case.
Verbs and prepositions can be formal objects of a lexical context and therefore can
have the same types of semantic relations among each other (including antonymy)
as nouns. For example, ‘grow’ is in contrast to ‘shrink’ in the same way as ‘big’
is to ‘small’. But verbs and prepositions can also be semantic relations themselves.
Some of these semantic relations can be inverted (such as ‘A teaches B’ versus ‘B
learns from A’). The contrast relation between ‘teach’ and ‘learn from’ is a rela-
tion between relations represented by verbs. As another example, ‘before’ can be a
relation between ‘morning’ and ‘evening’ with the inverse relation ‘after’ and a con-
trast relation between ‘before’ and ‘after’. Therefore there are two types of relations
among verbs and prepositions: semantic relations among the denotative word con-
cepts of verbs and prepositions and ‘meta-relations’ among semantic relations that
are denoted by verbs or prepositions. (In rare occasions nouns can also be semantic
relations themselves such as ‘A is brother of B’ and ‘B is sister of A’.) Chaffin &
Herrmann’s types ‘reverse’ and ‘directional’ represent ‘meta-relations’ whereas their
other types are usually ordinary semantic relations. Prepositions and verbs that are
interpreted as semantic relations themselves are studied in the next section.

Contrast relations are different from meronymy in that they seem to be based on
attributes instead of objects. In analogy to Definition 2.1 concept relations based
on denotative relations among attributes are defined in Definition 3.4. It is not the
purpose of this paper to discuss antonymy, the prototypical contrast relation, in de-
tail. Several definitions of antonymy can be found in the literature (compare, for
example, Miller et al. (1990)). Usually the differences between the types of antonyms
are expressed by logical formulas. For example, a and b are defined to be contrary if
a ⇒ ¬b and b ⇒ ¬a; a and b are defined to be contradictory if a = ¬b and b = ¬a,
and so on. Nevertheless these logical properties are usually not sufficient conditions
for antonymy. In a concept lattice a negation operator ‘¬’ among attributes, such as
in a = ¬b for attributes a and b would not have to correspond to the ‘¬’-operator in
a Boolean lattice. Otherwise a contradictory antonymy relation between attributes
a and b would require that every object that does not have the attribute a has the
attribute b. The status ‘a and b are both irrelevant for an object’ could not be ex-
pressed. An antonymy relation among attributes in a formal context can therefore
not be deduced from the relations in the lattice, but has to be defined as a denota-
tive relation among attributes. This is done in Definition 3.5 for a general contrast
relation. The definition is not always appropriate for indirect antonymy since word
concepts can be included which usually are not considered to be indirect antonyms.
Fischer et al. (1996) recommend the following definition of antonymy: ‘When two
concepts are opposed, there will be a common ancestor with respect to hypernymy,
and the concepts found in the different chains up to this nearest common ancestor
will be opposed to each other’. It is true that antonyms often have more attributes in
common than distinguishing attributes, but in a formal context each pair of concepts
has a common hypernym and defining a ‘nearest common’ hypernym would require
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some kind of measure on the lattice. Therefore Fischer’s definition cannot easily be
realized in a concept lattice. So there are still open questions concerning the modeling
of antonymy.

Definition 3.4:
For a context (G, M, I), concepts c1, c2 ∈ B(G, M, I), a relation r ⊆ M × M , and
quantifiers Qi, 1 ≤ i ≤ 4,

c1 R
r
[Q1, Q2; ] c2 :⇐⇒ Q1

m1∈Int(c1)Q
2
m2∈Int(c2) : m1rm2 (27)

c1 R
r
[; Q3, Q4] c2 :⇐⇒ Q3

m2∈Int(c2)Q
4
m1∈Int(c1) : m1rm2 (28)

c1 R
r
[Q1, Q2; Q3, Q4] c2 :⇐⇒ c1 R

r
[Q1, Q2; ] c2 and c1 R

r
[; Q3, Q4] c2 (29)

are defined as concept relations.

Definition 3.5:
In a denotative structure SD the following semantic relation is defined: Two disam-
biguated words are in contrast if there is a contrast relation x defined on attributes
(i.e. x ⊆ AD×AD) that holds among at least one pair of attributes of their denotative
word concepts, i.e.

w1 CTRxw2 :⇐⇒ dnt(w1)R
x

0dnt(w2)

and the contrast relation x is a binary, symmetric, denotative relation. Contrast rela-
tions are contrary, contradictory, incompatible, or asymmetric contrary if the relation
x ⊆ AD × AD is contrary, contradictory, incompatible, or asymmetric contrary17.

In contrast to meronymy where the different kinds of relations depend on the quan-
tifiers, the different kinds of contrasts depend solely on the relational component x.
All contrast relations are of the type R0. This means that one pair of attributes is
enough to create a contrast relation among disambiguated words. Obviously, a con-
trast relation is always inherited to subconcepts. Sequence relations can be defined
analogously to Definitions 3.5 or 3.3 depending on whether they require relations on
objects or attributes for their construction.

3.9 Verbs and prepositions as semantic relations

Verbs and prepositions can be semantic relations themselves. For example, ‘teach’ is
a relation TEACHTO(≥1;≥1) between the concept ‘teacher’ and the concept ‘student’.
Its inverse relation (formally defined in Definition 3.6) is LEARNFROM(≥1;≥1). The
inverse relation of a verb does not have to be lexicalized. Often the inverse relation of
a verb is its passive voice (TAUGHTBY(≥1;≥1)). Formally inverse relations are defined
as follows:

17Sometimes necessary and/or sufficient conditions can be given to decide whether a relation x

is contrary, contradictory, incompatible, or asymmetric contrary. But that depends on the context.
The following condition is usually necessary: a1xa2 =⇒ ∀d∈D¬(dIDa1 and dIDa2) for a1, a2 ∈ AD.
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Definition 3.6:
Two semantic relations R1

(Q4;Q2) and R2
(Q2;Q4) are inverse to each other (denoted by

R1 = (R2)−1) if

∀w1,w2∈W : w1R
1
(Q4;Q2)w2 :⇐⇒ w2R

2
(Q2;Q4)w1

Teaching and learning usually involve a teacher, a student and a subject. Either
the student or the subject can be missing for ‘teach’: ‘She teaches him. She teaches
English. She teaches him English.’ The teacher or the subject can be missing for
‘learn’: ‘He learns English. He learns from her. He learns English from her.’ The
best modeling of these two verbs would probably include ternary relations and three
quantifiers. In our binary modeling, ‘LEARNFROM(≥1;≥1)’ and ‘TEACHTO(≥1;≥1)’
are inverse to each other, because they both require a teacher and a student and have
the same quantifiers Q4 and Q2. ‘LEARN’ as a relation between the concepts ‘student’
and ‘teacher’ has the quantificational tag (≥ 1;≥ 0) and is therefore not inverse to
‘TEACHTO’. It is also not inverse to ‘TEACH(≥1;≥0)’ because the quantifiers of
inverse relations are inverted according to Definition 3.6. Often semantic relations
are inverse to other semantic relations only in a prototypical sense. For example,
teaching someone does not always result in learning.

Whereas meronymy and antonymy represent a few types of relations (depending
on how they are counted: about three to twenty types of meronymy or antonymy
relations) which have several thousands of tokens (according to WordNet), verbs and
prepositions represent a large set of types of relations which have only a few tokens
each. Therefore it may not be useful to define each type of verbal or prepositional
relation separately. Among such relations other relations, such as inversion, can hold.
Even hierarchies of relations can be built (the classification of meronymy in Figure 3.1
is a hierarchy of meronymy relations). Other relations among verbs and prepositions
are semantic relations because they do not depend on the relational character of verbs
or prepositions. Semantic relations among verbs that usually not occur in other parts
of speech are sequence, cause, backward presupposition and entailment (the last two
according to Fellbaum (1990)). The next paragraph demonstrates that cause and
backward presupposition are special kinds of sequence relations.

Definition 3.7:
A sequence relation SEQ(Q4;Q2) is an antisymmetric semantic relation among denota-
tive word concepts of verbs.
A cause relation is a sequence relation of the type SEQ(≥0;≥1). A backward presuppo-
sition is a sequence relation of the type SEQ(≥1;≥0).
A semantic relation among verbs with quantifier || ≥ n||, n ≥ 1, for Q4 or Q2 is
called entailment relation.

Fellbaum (1990) distinguishes four types of entailment among verbs. A troponym
can entail its hypernym (limp/walk or lisp/talk). This kind of entailment is usually
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‘co-extensive’ because limping and walking occur at the same time. Actions that
are properly included in other actions can entail the basic action (snore/sleep or
buy/pay). The other two types of entailment are backward presuppositions (suc-
ceed/try or untie/tie) and cause (raise/rise or give/have). Fellbaum’s first kind of
entailment is the normal inheritance of attributes from a hypernym to its hyponym
(or troponym). The same as ‘being a dog’ entails ‘being an animal’, the act of ‘limp-
ing’ entails the act of ‘walking’. Her second kind of entailment represents a feature
of meronymy relations and their quantificational tags. Since ‘snoring’ is always part
of ‘sleeping’ it entails sleeping (‘snore MER(≥0;≥1) sleep’). Since ‘buying’ has always
the part ‘paying’, ‘buying’ entails ‘paying’ (‘pay MER(≥1;≥0) buy’).

Her other two types of entailment depend on quantificational tags of the sequence
relation. For example, ‘succeed’ presupposes ‘try’ which means that succeeding fol-
lows trying in the sequence relation. Always when someone succeeds in something
he or she must have tried it before. Between ‘try’ and ‘succeed’ holds therefore the
backward presupposition ‘try SEQ(≥1;≥0) succeed’. Verbs which stand in cause rela-
tion to each other are in sequence relation to each other with inverted quantification
compared to backward presupposition. ‘Give’ causes ‘have’, but ‘have’ does not pre-
suppose ‘give’. ‘Give’ precedes ‘have’ in the sequence relation, and ‘give SEQ(≥0;≥1)

have’. The sequence relation can in some rare occasions be a partially ordered set in-
stead of a linear ordering. For example, ‘aim’ has two successors ‘hit’ and ‘miss’ which
are antonymous to each other. WordNet itself has no verbs implemented which stand
in cause relation and backward presupposition to each other at the same time (that
would be the relation SEQ(≥1;≥1)), probably because such verbs are usually highly
specific and usually not lexicalized, such as ‘sleep SEQ(≥1;≥1) wake up from sleep’.
This last section shows that Relational Concept Analysis can be effectively applied
to semantic relations among verbs. Obviously many questions and problems are left
for future research, such as the modeling of ternary relations and the modeling of
case relations (object, agent, instrument, and so on).
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4 Applications and extensions of Relational Con-

cept Analysis

In the preceeding chapters the basic features of Relational Concept Analysis have
been defined and applied to semantic relations. In this chapter Relational Concept
Analysis is compared to other theories or models of knowledge representation, such as
semantic networks, the Entity Relationship Model, and terminological logic. A study
is made as to whether Relational Concept Analysis can express or can be extended
to express the same statements and relations as the other theories. It seems likely
that all models and theories of knowledge representation and data structuring have
advantages and disadvantages. The strategy of Relational Concept Analysis is to
use the formal representation of formal contexts and concept lattices as provided by
Formal Concept Analysis as its main component. The formal conceptual approach
has been proven to be very reliable and efficient in many applications (Ganter &
Wille, 1996). Other relations, attributes and features that cannot be modeled ac-
cording to the mathematical properties of lattices are then formalized as additional
relations and additional attributes that follow rules which are not as strict. It seems
that this approach of extending the strict formal kernel of Formal Concept Analysis
with less formalized structures fulfills two goals: first, it provides a highly structured
environment for most of its elements; second, it is extended to also contain less struc-
tured elements and can therefore be applied to a wider range than Formal Concept
Analysis by itself. Future research is needed to investigate how far Formal and Re-
lational Concept Analysis can be extended and whether it is even possible to use
them for all applications for which other systems of knowledge representation and
data structuring are used.

4.1 Lexical structures versus conceptual structures

A major difficulty for knowledge representation systems seems to be the difference be-
tween lexical items (with their lexical or syntactic relations) and concepts (with their
semantic relations). Pustejovsky (1993) presents an extensive collection of attempts
at combining them. In natural languages lexical and conceptual structures are usu-
ally dependent on and complementary to each other. For example, polysemy, which
is a more or less regular method (compare Kilgarriff (1995)) of applying one word to
several concepts, allows the expression of a large number of concepts using a fixed
lexicon of words. Sowa (1993) even speaks of infinitely many concepts that can be
composed from a finite number of words. Polysemy, metaphor, and metonymy allow
speakers, for example, to be creative, to relate concepts, and to connote associations
to concepts. For a machine and for knowledge representation purposes, polysemy,
metaphor, and metonymy provide difficulties: does each polysemous meaning or each
metaphorical use of a word represent a new concept which should be represented
separately? Obviously, a purely lexical syntactic representation cannot cope with se-
mantic disambiguation. To quote Cruse’s example, ‘topless dress’, ‘topless dancer’,
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and ‘topless bar’ have the same syntactic structures, but the meaning of ‘topless’
cannot be parsed as ‘having no top’ in all cases. On the other hand, a purely concep-
tual representation in some kind of metalanguage denoting ‘concept1: dress without
top’, ‘concept2: dancer who wears no top’ and ‘concept3: bar with topless dancers’
does not demonstrate the subtle joke that results from the polysemy of ‘topless’.

metonymy

platform

theater   dramaturgy

building

performed in

stage

theater

stage

part of

polysemy

Figure 4.1: Semantic and lexical relations in a denotative lattice

Another discrepancy between lexical and conceptual structures are lexical irregular-
ities which are not represented in the concepts. For example, a fork (in its primary
sense) is a kind of cutlery, but ‘fork’ is a singular term whereas ‘cutlery’ is a collective
noun. Therefore according to the lexical structure it might be more adequate to say
that a fork is a part of cutlery. On the other hand, a fork as an agricultural tool is a
kind of tool and not a ‘part of tool’. Although this distinction can also be made on
the conceptual level: ‘cutlery’ is a set of fixed elements whereas ‘tool’ is a generic term
for many different items, this distinction is not necessary for a conceptual modeling
and does not have to occur in other natural languages. ‘Cutlery’ is also a collective
noun in German (‘Besteck’), but the plural nouns ‘glasses’ and ‘trousers’ are singular
in German (‘Brille’, ‘Hose’). To summarize: lexical items and conceptual items both
follow certain rules and have certain features. But not all features of lexical items and
relations are represented in the conceptual items and relations, nor are all features
of conceptual items and relations represented in the lexical items and relations. On
the other hand, some features of lexical items do influence features of concepts and
vice versa. Therefore lexical and conceptual items and relations form two separate
systems that influence each other. It seems that in order to present the complete con-
tent of a natural language expression, both lexical and conceptual structures should
be considered. Sowa (1993) claims that different Conceptual Graphs can be used for
conceptual and lexical structures, but he does not explain how the conceptual and
the lexical representations can be related to each other. Relational Concept Analysis
presents a method of demonstrating conceptual and lexical structures and the rela-
tionship between them by drawing lattices for the underlying conceptual structures
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and using additional relations to display lexical relations. In the example in Figure
4.1 the solid lines denote a denotative lattice describing the hyponymy relation. The
dashed lines denote other semantic relations, such as ‘part of’ or ‘performed in’. They
can be quantified according to Chapter 2 and 3. The dotted lines represent lexical re-
lations, i.e. they connect disambiguated words instead of concepts. Two polysemous
senses of ‘theater’ connected by the polysemy relation occur in the figure. The two
senses of ‘stage’ are in metonymy relation to each other. This kind of representation
shows the differences in the lexical and semantic relations. It can also be used to
demonstrate ‘lexical gaps’ (concepts that are not denoted by a disambiguated word)
or differences between several languages by drawing and comparing diagrams for
similar concepts in several languages.

In the rest of this section, a suggestion is made as to how to relate lexical syntactic
composition rules with conceptual composition rules. A more detailed and complete
discussion of this subject would require the definition of some kind of ‘formal gram-
mar’ and would be too comprehensive for this paper. Definition 4.1 and Lemma 4.1
intend to present a suggestion of how Formal Concept Analysis can be used in this
area. A lexical expression is, for example, ‘a man is a male, mature person’ or, for-
malized as ‘man IS A male person AND mature person’. A corresponding conceptual
expression in a denotative structure is ‘c1 = c2 ∧ c3’ with dnt(man) = c1, dnt(male
person) = c2, and dnt(mature person) = c3. The same conceptual expression could
also be represented by a Conceptual Graph or, for example, by classes of the Uni-
versal Decimal Classification (Rowley, 1992) that are combined by ‘+’, ‘:’ ‘/’, and so
on. Lexical and conceptual terms and expressions follow different composition rules:
Lexical items can be combined to form lexical terms, such as ‘tall woman’. Concepts
can be combined according to rules of formal representation systems, such as the
mathematical operations in a concept lattice or the composition rules of Conceptual
Graphs or the Universal Decimal Classification. In the case of denotative lattices in
denotative structures this is formalized in Definition 4.1. This is not the only possi-
bility of assigning a natural or formal language interpretation to a concept lattice.
For example, Prediger (1996) interprets the formal attributes as attribute names of
a formal language in terms of terminological logic (Baader, 1992).

Definition 4.1:
Let SD be a denotative structure with denotative context KD := (D, AD, ID) and a
set W of words. Let the formal attributes in AD be English adjectives, and let the
words in W be English nouns. Let the top concept of the lattice be a denotative word
concept denoted by the word w> ∈ W .
A lexical term is a concatenation of adjectives, nouns, ‘AND’ and ‘OR’ according to
one of the following rules18 (L denotes the set of lexical terms):

w ∈ L for all w ∈ W

18This terminology could be extended to include ‘NOT’.
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al ∈ L for all a ∈ AD, l ∈ L

(l1 AND l2) ∈ L for all l1, l2 ∈ L

(l1 OR l2) ∈ L for all l1, l2 ∈ L

A lexical term is a meaningful lexical term in a denotative structure if it denotes a
denotative concept other than the bottom concept ‘⊥’ according to the judgement of
native language speakers, i.e. the mapping dnt : W → C is extended to dnt : L → C∪
{∅} with dnt(l) = ∅ for meaningless lexical terms. The set LSD

of meaningful lexical
terms in a denotative structure is defined as LSD

:= {l ∈ L | ∃c∈C\{⊥} : dnt(l) = c}.
Lexical expressions are of the form

d IS A l for all d ∈ D, l ∈ LSD

l1 IS A l2 for all l1, l2 ∈ LSD

Meaningful lexical expressions are lexical expressions with d IS A l ⇐⇒ d INST l,
and l1 IS A l2 ⇐⇒ l1 HYP l2 according to Definition 3.2.
A conceptual term is of the form c1 ∧ c2 or c1 ∨ c2 with c1, c2 ∈ C. Conceptual
expressions are of the form d ∈ Ext(c) and c1 ≤ c2 with d ∈ D, c, c1, c2 ∈ C.

According to this definition the most general concept in a concept lattice is always
denoted by a disambiguated word. This word can, for example, be ‘entity’ or ‘item’.
The bottom concept of a concept lattice often has no denotata in its extent. Lexical
terms that denote the bottom concept, such as ‘male female person’ are thus not
considered to be meaningful. By using INST and HYP according to Definition 3.2
it is insured that meaningful lexical expressions are always true within a denotative
structure. Conceptual expressions can be true or false.

John

adult child

woman man girl boy

person

female malemature immature

Anna PeteMary

Figure 4.2: A denotative lattice

With Definition 4.1 lexical terms and expressions can be derived from the denotative
lattice in Figure 4.2. ‘Mngful’ in brackets indicates that we consider the term to be
meaningful according to Lemma 4.1.
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woman (mngful), female woman, female man, female person (mngful)
female person AND mature person (mngful), mature boy AND immature child

female person OR mature person, woman OR girl (mngful)

John IS A man (mngful). Mary IS A girl (mngful). John IS A woman.
A woman IS A adult (mngful). A child IS A person (mngful).

The following paragraph including Lemma 4.1 explains why we consider some of
the terms and expressions meaningful or meaningless. Obviously, rules can be devel-
oped to decide whether certain expressions must be meaningful if their components
are meaningful. But since meaningfulness is defined with respect to native language
speakers, there may not be a general agreement about all rules. The following lemma
seems to be acceptable.

Lemma 4.1:
For l, l1, l2 ∈ LSD

, a, a1, a2 ∈ AD:

dnt(aw>) = µa

µa ≥ dnt(l) or µa ≤ dnt(l) =⇒ al 6∈ LSD

dnt(l1) ∧ dnt(l2) 6= ⊥, l1 6≤ l2 and l2 6≤ l1 =⇒ (l1 AND l2) ∈ LSD

Ext(dnt(l1) ∨ dnt(l2)) 6= Ext(dnt(l1)) ∪ Ext(dnt(l2)) =⇒ (l1 OR l2) 6∈ LSD

(l1 AND l2) ∈ LSD
=⇒ dnt(l1 AND l2) = dnt(l1) ∧ dnt(l2)

(l1 OR l2) ∈ LSD
=⇒ dnt(l1 OR l2) = dnt(l1) ∨ dnt(l2)

al ∈ LSD
=⇒ dnt(al) = (µa ∧ dnt(l))

a1a2l ∈ LSD
=⇒ dnt(a1a2l) = (dnt(a1l) ∧ dnt(a2l))

‘Female woman’ is not meaningful according to the lemma since women are always
female i.e. µfemale ≥ dnt(woman) in Figure 4.2. ‘Female man’ denotes the bottom
concept and is therefore not meaningful. Compositions with ‘OR’ are not meaningful
in the given denotative structure if the concept dnt(l1) ∨ dnt(l2) has more denotata
in its extent than the union of Ext(dnt(l1)) and Ext(dnt(l1)). For example in Figure
4.2, ‘female person OR mature person’ includes women, adults, men, and girls, but
dnt(female person) ∨ dnt(mature person) also has the boy Pete in its extent who
is neither ‘female’ nor ‘mature’. This phenomenon is in opposition to ‘lexical gaps’.
Lexical gaps are concepts that can be constructed according to conceptual composi-
tions, but cannot be described by a disambiguated word. ‘Female person OR mature
person’ is constructed according to lexical composition rules, but does not denote a
concept in the denotative lattice of Figure 4.2. Obviously, meaningfulness depends on
the underlying denotative structure. In another lattice, a concept ‘female person OR
mature person’ could exist. Stumme (1994) investigates concept lattices that include
all concepts that can be constructed by using ‘OR’.

93



It is not attempted to develop a comprehensive theory of lexical and conceptual ex-
pressions in this paper. Many questions remain open: for example, plural nouns be-
have differently from singular nouns. ‘Woman AND man’ is usually not a meaningful
term, but ‘women AND men’ denotes the extent of ‘dnt(woman OR man)’. Further-
more compositions of adjectives require a more elaborate formalization. In Lemma
4.1 several adjectives that modify the same noun are interpreted in a sense that is
often indicated in English by inserting a comma between the adjectives. According
to Lemma 4.1 ‘female mature person’ is synonymous to ‘mature female person’ or
‘mature, female person’, a person that is mature and female. Lemma 4.1 is not always
adequate for grading adjectives: ‘tall female persons’ is a set of tall persons selected
from a set of women. On the other hand, ‘female tall persons’ is a set of women
selected from a set of tall persons. If ‘tall’ is interpreted as ‘tall for a woman’ in the
first case and ‘tall for a person’ in the second case, the set of ‘tall persons’ might not
contain any woman whereas ‘tall female persons’ might contain women. Similarly, in
some languages composite nouns can be more or less systematically built from single
nouns, such as ‘pet dog’ which is synonymous to ‘pet AND dog’. Composite nouns,
however often have a slightly different meaning than the combined single meanings
and the order is not arbitrary (‘dog pet’ does not exist in the English language).
Besides ‘AND’ and ‘OR’, ‘NOT’ could be included into the formalization in Defini-
tion 4.1. It would then have to be investigated how ‘NOT’ and the Boolean lattice
operation ‘¬’ interrelate. All these problems are left for future research.

4.2 Relational Algebra

This section demonstrates how the relations of Relational Concept Analysis can be
defined within Relational Algebra (Pratt, 1992). One advantage of the modeling
in Relational Algebra is that the evaluation of quantified expressions is reduced to
the computation of binary matrix multiplications which are easily implemented in
a computer program. Only quantifiers ||all|| and || ≥ 1|| and their negations are so
far implicitly considered in Relational Algebra. While this section formalizes some
aspects of Relational Concept Analysis in terms of Relational Algebra, it might also
be possible to extend Relational Algebra to include other quantifiers (which has not
yet been achieved according to our knowledge) using the ideas of this section. In
Relational Algebra operations such as ‘−’, ‘∪’, ‘+’, ‘·’, and ‘j’ are defined, among
others. We use I instead of I− for the complement of a relation, Id instead of I∪

for the dual of a relation, and I ◦ J instead of IjJ for the relational product. The
operations ‘+’ and ‘·’, union and intersection of relations, are not needed in our
modeling.

Definition 4.2

For a binary relation I(⊆ G1 × G2), the complementary relation I(⊆ G1 ×G2), and
the dual relation Id(⊆ G2 ×G1) are defined as follows. For g1 ∈ G1, g2 ∈ G2:

g1Ig2 :⇐⇒ ¬(g1Ig2)
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g2I
dg1 :⇐⇒ g1Ig2

The (relational) product I ◦J of two binary relations I(⊆ G1×G2) and J(⊆ G2×G3)
is defined for all g1 ∈ G1, g3 ∈ G3 as

g1(I ◦ J)g3 :⇐⇒ ∃g2∈G2
: g1Ig2 and g2Jg3

The identity Id(⊆ G×G) is defined for all g1, g2 ∈ G as

g1 Id g2 :⇐⇒ g1 = g2

Using Relational Algebra some of the concept relations from Chapter 2 can be ex-
pressed as a relational product. We develop the formalizations in this section only
with respect to certain applications: It is often useful not to consider all formal ob-
jects and attributes individually, but to group them into classes. A relation between
objects and attributes can then be transformed into a relation between object and
attribute classes. Or, if the formal objects and attributes are denotata and the classes
are concepts in another formal context, relations among denotata can be generalized
to relations among concepts as in Chapter 2. An example where classification of ob-
jects and attributes is needed is in psychological experiments that are interested in
statements about certain groups, such as women between the ages 50 and 60, derived
from a questionnaire given to individuals. After classing the objects into classes it
is then necessary to decide whether a class has an attribute if all its objects, most
of its objects, or some of its objects have the attribute. This decision requires quan-
tifiers, such as ||all||, ||most|| or || ≥ 1||. In many applications these quantifiers are
not explicitly named and therefore valuable information can be lost. Modelings with
Relational Concept Analysis always make quantifiers explicit. Definition 4.5 provides
a formalization of a context schema consisting of objects, attributes, and classes of
objects. Some of the attributes in the context schema are not the formal (essential)
attributes in a concept lattice, but they are additional (accidental) attributes that are
assigned to concepts in the same way as semantic relations, such as meronymy, are
additional relations to the lattice structure. Whereas semantic relations are binary
relations, a set of attributes can be interpreted as a set of unary relations. Defini-
tion 4.3 formalizes therefore unary concept relations in analogy to Definition 2.1.
Definition 4.4 formalizes the relations between concepts and accidental attributes.

Definition 4.3:
For a context (G, M, I), a concept c ∈ B(G, M, I), a unary relation ra ⊆ G, and a
quantifier Q a unary concept relation Rra[Q] ⊆ B(G, M, I) is defined as

c Rra[Q] :⇐⇒ Qg∈Ext(c) : gra

The context (G, M, I) in Figure 4.3. provides an example. Tomato, cucumber, apple,
and banana are classed into fruit and vegetable19. The classes ‘fruit’ and ‘vegetable’

19‘Vegetable’ and ‘fruit’ are here used in their natural language sense, not in the biological sense
where tomatoes and cucumbers would be fruit.
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are the formal attributes of (G, M, I). The denotative attributes that are used to
distinguish between fruit and vegetable are not known. A second context (G, A, r) as-
signs other attributes (color attributes) to tomato, cucumber, and so on. In the sense
of (G, M, I) the formal attributes of (G, A, r) are additional, accidental attributes
that cannot be assigned to concepts in the concept lattice of (G, M, I) without quan-
tification. But if rred :=‘has color red’, ryel :=‘has color yellow’, and rgre :=‘has
color green’, are defined and if Q is the || ≥ 1||-quantifier then c1R

rred [|| ≥ 1||] and
c1R

rgre[|| ≥ 1||]. If Q is the ||all||-quantifier then c1R
rgre[||all||]. In other words, the

concept of ‘vegetable’ in the concept lattice of (G, M, I) can get the additional at-
tributes ‘all denotata can be green’ or ‘some denotata are green or red’ assigned.
The advantage of this approach is that attributes can be added to a concept lattice
with a preceding quantifier. For example, the attribute ‘flying’ can be assigned to
the concept ‘bird’ if it is modified by the quantifier ||almost all||. Instead of defining
three unary relations rred, ryel, and rgre a binary relation r(⊆ G× A), which is ‘has
color’ in our example, can be defined (Definition 4.4). The difference from Definition
2.1 is that this binary relation is not defined among two sets of concepts but between
concepts and attributes, therefore only one quantifier is required.
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Figure 4.3: Different quantifiers in a combination of contexts
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The two formal contexts in Figure 4.3 could also be interpreted in the sense of
‘multicontexts’ (Wille, 1996) for which several methods of composition exist. Our
modeling differs from multicontexts in that a concept lattice is computed only for
one formal context ((G, M, I) in the example) whereas the other formal context
((G, A, r) in the example) provides additional information for the first context.

Definition 4.4:

For formal contexts (G, M, I) and (G, A, r), a concept c ∈ B(G, M, I), and a quantifier
Q, binary relations Rr[Q; ] ⊆ B(G, M, I)×A and Rr[; Q] ⊆ A×B(G, M, I) are defined
as

c Rr[Q; ] a :⇐⇒ Qg∈Ext(c) : gra

a Rr[; Q] c :⇐⇒ Qg∈Ext(c) : ardg.

In the example of Figure 4.3, c1R
has color[|| ≥ 1||; ]‘green’, c1R

has color[|| ≥ 1||; ]‘red’,

and c1R
has color[||all||; ]‘green’ hold. The example is further formalized in the next

definition.

tomato
cucumber
apple
banana

to
m

at
o

cu
cu

m
be

r
ap

pl
e

ba
na

na

x

x x
x

x

x

x

x

x
x

x
x

fruit
vegetable

re
d

ye
llo

w
gr

ee
n

R*
x x

x

Figure 4.4: The example from Figure 4.3 as relational context schema

Definition 4.5:

Two formal contexts (G, M, I) and (G, A, r) and a relation R? := R?r[Q; ](⊆ M ×A)
which is defined as mR?a :⇐⇒ µmRr[Q; ]a combined according to the schema
in Figure 4.5.a form a relational context schema with one quantifier denoted by
(G, M, A, I, r, R?r[Q; ]).

Two formal contexts (G, M, I) and (G, A, r) and a relation R? := R?r[; Q](⊆ A×M)
which is defined as aR?m :⇐⇒ aRr[; Q]µm combined according to the schema
in Figure 4.5.b form a relational context schema with one quantifier denoted by
(G, M, A, I, r, R?r[; Q]).
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While R is a relation between concepts and attributes (Definition 4.4), R? is a relation
between two sets of formal attributes. Theorem 4.1 shows that, for some quantifiers,
R (or R?) can be constructed as a product of the relations I and r (or their comple-
ments) according to Relational Algebra. Figure 4.4 presents the relational context
schema for the example in Figure 4.3.

Theorem 4.1:
If Q is an element of {||all||, || ≥ 1||, ||0||, ||¬all||} then the following equations hold20.

µm Rr[||all||; ] a ⇐⇒ m (Id ◦ r) a ⇐⇒ ||all||g∈G : (gIm =⇒ gra)

µm Rr[|| ≥ 1||; ] a ⇐⇒ m (Id ◦ r) a ⇐⇒ || ≥ 1||g∈G : (gIm and gra)

µm Rr[||0||; ] a ⇐⇒ m (Id ◦ r) a ⇐⇒ ||0||g∈G : (gIm and gra)

µm Rr[||¬all||; ] a ⇐⇒ m (Id ◦ r) a ⇐⇒ || ≥ 1||g∈G : (gIm and ¬(gra))

Definition 4.5 and Theorem 4.1 demonstrate that already the combination of two
contexts that share their objects (or attributes) can lead to different relational prod-
ucts depending on the selection of the quantifier. The other possible products, Id ◦ r

Id ◦ r, Id◦r, and Id ◦ r, are not useful in Relational Concept Analysis since they would
lead to quantifiers Qg 6∈Ext(µm). Other natural language quantifiers Q could be chosen,
but they cannot be expressed within Relational Algebra. Definition 4.6 extends the
relational context schemata to three formal contexts with two quantifiers.

Definition 4.6:
Three formal contexts (G1, M1, I1), (G2, M2, I2), (G1, G2, r) and two relations R?

1 :=
R?r

1 [Q1; ](⊆ M1 × G2) and R? := R?r[Q1, Q2; ](⊆ M1 × M2), which is defined as
m1R

?m2 :⇐⇒ µm1R
r[Q1, Q2; ]µm2, combined according to the schema in Figure

4.6.a form a relational context schema with two quantifiers denoted by
(G1, M1, G2, M2, I1, I2, r, R

?r
1 [Q1; ], R?r[Q1, Q2; ]).

Three formal contexts (G1, M1, I1), (G2, M2, I2), (G1, G2, r) and two relations R?
2 :=

R?r
2 [; Q3](⊆ G1 × M2) and R? := R?r[; Q3, Q4](⊆ M1 × M2), which is defined as

m1R
?m2 :⇐⇒ µm1R

r[; Q3, Q4]µm2, combined according to the schema in Figure
4.6.b form a relational context schema with two quantifiers denoted by
(G1, M1, G2, M2, I1, I2, r, R

?r
2 [; Q3], R?r[; Q3, Q4]).

20Proof: From gIm ⇐⇒ g ∈ Ext(µm) follows || ≥ 1||g∈G : (gIm and gra) ⇐⇒ || ≥ 1||g∈Ext(µm) :
gra. The other quantifiers are treated similarly.
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The two cases of Definition 4.6 represent the two aspects of concept relations (first
quantifying the first set or first quantifying the second set) according to Definition
2.1. Theorem 4.2 demonstrates how Definition 2.1 is related to Definition 4.6 by
showing how R is related to R?. Similarly to that which has been stated about The-
orem 4.1, some relational products that are possible according to Relational Algebra
are irrelevant to Relational Concept Analysis because they involve quantifiers about
elements ‘not’ in a set and vice versa: natural language quantifiers which can be used
in Relational Concept Analysis are not used in Relational Algebra.

Theorem 4.2:
With the terminology of Definition 4.6 and quantifiers Q1, Q2 ∈ {||all||, || ≥ 1||, ||0||,
||¬all||} the following holds21

m1 Id
1 ◦ r ◦ I2 m2 ⇐⇒ µm1 Rr[||all||, ||all||; ] µm2

m1 Id
1 ◦ r ◦ I2 m2 ⇐⇒ µm1 Rr[||all||, || ≥ 1||; ] µm2

m1 Id
1 ◦ r ◦ I2 m2 ⇐⇒ µm1 Rr[||all||, ||0||; ] µm2

m1 Id
1 ◦ r ◦ I2 m2 ⇐⇒ µm1 Rr[||all||, ||¬all||µm2

m1 Id
1 ◦ r ◦ I2 m2 ⇐⇒ µm1 Rr[|| ≥ 1||, ||all||; ] µm2

m1 Id
1 ◦ r ◦ I2 m2 ⇐⇒ µm1 Rr[|| ≥ 1||, || ≥ 1||; ] µm2

m1 Id
1 ◦ r ◦ I2 m2 ⇐⇒ µm1 Rr[|| ≥ 1||, ||0||; ] µm2

m1 Id
1 ◦ r ◦ I2 m2 ⇐⇒ µm1 Rr[|| ≥ 1||, ||¬all||; ] µn2

The equivalences for Q1 ∈ {||¬all||, ||0||} are built analogously.

The rest of this section shows an example of a relational context schema with two
quantifiers. The two attribute sets M1 and M2 are interpreted as classes of objects.

21Proof: The first of these equations is proved by m1 Id ◦ r ◦ I m2 ⇐⇒ ¬∃g1∈Ext(µm1)

∃g2∈Ext(µm2) : ¬(g1rg2) ⇐⇒ ∀g1∈Ext(µm1)¬∃g2∈Ext(µm2) : ¬(g1rg2) ⇐⇒ ∀g1∈Ext(µm1)∀g2∈Ext(µm2) :
g1rg2. The others are proved similarly. Parenthesis are not needed for the ◦ operation since it is
associative, i.e. I ◦ J ◦K = (I ◦ J) ◦K = I ◦ (J ◦K).
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The set G1 of objects consists of ‘cat’, ‘woman’, ‘vegetarian’, and ‘eagle’. The set
M1 presents a set of classes for the objects in G1: ‘animal’, ‘human’, ‘mammal’, and
‘predator’. The objects should be interpreted as prototypical objects. The other set
G2 of objects consists of nutrition ‘meat’, ‘French fries’, ‘milk’, and ‘mice’ and M2

are classes of food: ‘animal products’, ‘vegetarian’, ‘fast food’, and ‘meat’. ‘Meat’
is in one case considered as an object (prototypical object or one specific piece of
meat), in the other case as the class ‘meat’. The relation r between the objects of
G1 (living beings) and G2 (kinds of food) is ‘to eat’. According to the purposes, the
quantifiers can be selected to form the relation R? between classes of living beings
and classes of food. Figure 4.7 shows the relational context of the example. Figure 4.8
demonstrates the classifications on the two sets of objects: the lattices B(G1, M1, I1)
and B(G2, M2, I2). Figure 4.9 shows the relation ‘eat’ between the objects.
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Figure 4.10 shows the lattice B(M1, M2, R
?) for the examples R? = Id

1 ◦ r ◦ I2 and

R? = Id
1 ◦ r ◦ I2. The relation ‘EAT(≥0;≥1)’ represented by the dotted lines in Figure

4.11 generates the relation ‘all eat some’ in Figure 4.10. Since humans, mammals,
and predators are animals, the relation ‘eat’ between them and ‘animal products’
follows from the relation between ‘animal’ and ‘animal products’. The same holds for
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‘humans eat vegetarian food’ and ‘mammals eat vegetarian food’. Nevertheless the
relation in Figure 4.11 is not a basis of the original relation between objects since
the relation ‘all mammals eat some milk’ is missing. This element of the relation
is missing because the object concept ‘milk’ is not an attribute concept. On the
more abstract level of classes ‘animal products’, ‘fast food’, and so on, there is not
a single class for animal products which are vegetarian food at the same time. The
information about this special relation between ‘mammals’ and ‘milk’ can therefore
not be expressed in terms of mammals and classes of foods. This demonstrates that
classes have to be chosen carefully if information is to be transferred from an object
level to a more abstract level.
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4.3 Many-valued contexts

This section shows that Relational Concept Analysis provides a generalization of
the many-valued contexts (Ganter & Wille (1996)) of Formal Concept Analysis. A
many-valued context is defined as a context (G, M, W, I)22 consisting of three sets G,
M , and W and a ternary relation I(⊆ G ×M ×W ) with the condition (g, m, w) ∈
I and (g, m, v) ∈ I =⇒ w = v. The elements of G are called formal objects, the
elements of M many-valued attributes, and the elements of W values. (g, m, w) is
read as ‘the attribute m has the value w for the object g. This is also denoted by
m(g) = w. The first context (context KA := (G, M, W, I)) in Figure 4.12 shows an
example: ‘keyword 1’, ‘keyword 2’, and ‘published in’ are many-valued attributes for
books, such as ‘keyword 1(book1)= catalogs’. Since the attributes of many-valued
contexts can have only one value for each object, keyword 1 and keyword 2 are
not joined into one attribute ‘keyword’ that has several values. Another solution to
this problem would be to allow elements of the power set of keywords to be values
of ‘keyword’. In relational databases (relational tables can be interpreted as many-
valued contexts as explained in the next section) this second solution is usually
considered to be in contradiction to database normalization. Another example of a

22The letters G, M , W , I are taken from Ganter & Wille (1996). Therefore in this section W

does not denote the set of disambiguated words.
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problematic attribute is ‘telephone-number’ which has to be split into ‘first telephone-
number’, ‘second telephone-number’, and so on. This is problematic because adding
a new object to the context may require the addition of a new attribute (for example,
if the new object has more telephone numbers than expected).
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Figure 4.12: An example

In Formal Concept Analysis, many-valued contexts are usually conceptually scaled
into single-valued contexts. A conceptual scale for an attribute m is a single-valued
context Sm = (Gm, Mm, Jm) with m(G) ⊆ Gm. Context KC := (Gm3, Mm3, Jm3)
in Figure 4.12 is a conceptual scale for the years of publishing in context KA. In
context KB := (Gm1 ∪ Gm2, Mm1,m2, Jm1,m2) the values of ‘keyword 1’ and ‘key-
word 2’ are unioned into one set of formal objects. They are ‘scaled’ into the dis-
ciplines ‘computer science’, ‘information science’, and ‘library science’. Conceptual
scales are usually developed depending on abstract knowledge of the conceptual
properties of the attributes in the formal context and not depending on the ex-
isting objects. For example, the decision about ‘recent’ and ‘old’ in KC should de-
pend on knowledge about the age of books in scientific disciplines and not on the
actual age of the books in KA. A realized scale is a formal context (G, Mm, Jm)
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with ∀g∈G,n∈Mm
: (gJmn :⇐⇒ ∃w∈m(G) : (m(g) = w and wJmn)). The context

(G, Mm3, R
?Jm3[|| ≥ 1||; ]) in the right lower corner of the relational context schema

E(:= (Gm3, G, Mm3, Im3, Jm3, R
?Jm3[|| ≥ 1||; ])) is an example of a realized scale. Ac-

cording to E, books are ‘recent’ or ‘old’ if the years in which they were published are
‘recent’ or ‘old’ according to the conceptual scale in KC . Realized scales are combined
to a derived context of a many-valued context (G, M, W, I) as a context (G, N, J) with
N :=

⋃
m∈M{m}×Mm and gJ(m, n) :⇐⇒ ∃w∈m(G) : (m(g) = w and wJmn). In plain

scaling the derived context consists of appositions of realized scales. A software tool
TOSCANA (Vogt & Wille, 1994) allows the combination of scales and navigation
through them.

The definitions of ‘realized scales’ and ‘derived contexts’ in the last paragraph show
that an || ≥ 1||-quantifier is involved. Since in Formal Concept Analysis many-valued
attributes have only one value for each object, the || ≥ 1||-quantifier is the only useful
quantifier. If the values of an attribute are set into relation with the objects (as in
context KB), an object can relate to several values of an attribute. Therefore different
quantifiers can be used, and realized scales can be interpreted as contexts (M, A, R?)
(or (A, M, R?)) in a relational context schema according to Definition 4.5. In the re-
lational context schema D := (Gm1∪Gm2, G, Mm1,m2, Im1,m2, Jm1,m2, R

?Jm1,m2 [||all||; ])
the ||all||-quantifier is utilized: ‘all keywords of book 1 belong to library science there-
fore book 1 belongs to library science’. If the || ≥ 1||-quantifier was used, book 1 would
also belong to information science since one of its keywords belongs to information
science. A relational context schema (such as D in the example) could also be inter-
preted according to Figure 4.5.b. An ||all||-quantifier would then produce statements
such as ‘all keywords of a discipline are assigned to a book’, but that does not seem
to be very convincing for this application. Other quantifiers, such as ||almost all||,
might be useful for other applications.

In summary: relational context schemas are useful for attributes that have several val-
ues for an object. Furthermore they allow a variety of quantifiers to be applied. Unfor-
tunately, for an implementation, the query algorithm of the software tool TOSCANA
would have to be modified. Furthermore, the lattice of (M, A, R?) (compare Defini-
tion 4.5) is not easily constructed from the lattices of (G, M, I) and (G, A, r) if other
quantifiers than the || ≥ 1||-quantifier are involved. Thus, solving the problems of an
implementation is left for future research. Instead of the apposition of the realized
scales to form a derived context, other combinations could be utilized. For example,
the values of several many-valued attributes could be scaled into {good, medium,
bad} and it could be asked whether an object has ‘good’ values for all its attributes
which would be the relational intersection (Pratt, 1992) of the realized scales. This
approach would be similar to Prediger’s (1996) interpretation of formal attributes as
attribute names of a terminological description language. A comparison of Relational
Concept Analysis and Prediger’s theory is left to future research.
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4.4 The Entity-Relationship Model

Many-valued contexts, such as context KA in Figure 4.12, can represent tables of a
relational database. Since the Entity-Relationship Model (ER Model, compare Chen
& Knoell (1991)) is often utilized to display the relationships among the objects and
tables it is of interest to compare Relational Concept Analysis to the ER Model.
A comprehensive comparison would exceed the scope of this paper therefore only
some differences are mentioned in this section. The ER Model provides a graphical
representation of the internal structure of a relational database. ER Diagrams are
mainly utilized in the design stage of a relational database, but they can also be
helpful in forming queries for the database. Attempts have been made to design user
friendly interfaces for relational databases which graphically display the ER Diagrams
(compare for example Burg & van de Riet (in prep.)). As practical implementations of
Relational Concept Analysis do not yet exist, no comparison of the user-friendliness
of both theories can be made. On the theoretical level Relational Concept Analysis
has the advantage of treating the cardinality of relations in more detail. The ER
Model (Mannila & Räihä, 1994) distinguishes only ‘one to many’, ‘one to one’, and
‘many to many’ relations which are defined (in our terminology) as follows: R(≤1;≥0)

(one to many), R(≤1;≤1) (one to one) and R[|| ≥ 1||, || > 1||; || ≥ 1||, || > 1||] (many to
many). Other quantifications cannot be expressed. Instead, if other quantifications
are needed they have to be added separately as constraints (Burg & van de Riet, in
prep.).

Although the ER Model can facilitate the formation of queries to a database by
showing the relationships among the elements of the database, it does not provide
a graphical display for the query itself, or for the answer. Queries still have to be
constructed using SQL statements which have to be carefully matched to the names
of entities and objects and the layout of the database. They produce answers in the
form of tables. Consider context KA in Figure 4.12 as an example database table
called ‘library catalog’. The SQL query

select book, keyword_1, keyword_2 from library_catalog where

keyword_1="Internet" OR keyword_2="Internet" AND published_in > 1985

is answered by

book keyword_1 keyword_2

-----------------------------------

book3 hardware Internet

book4 Internet

2 row(s) retrieved

The system does not give the user any information as to whether other books are
contained in the database that deal with similar subjects. Nor does it help the user in
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correcting spelling mistakes which would result in an empty query result, despite the
fact that the desired objects are contained in the table. Nor does the system structure
the answer so that the user can get hints about the relevance of retrieved documents.
Relevance becomes important if, for example, hundreds of rows are retrieved. Using
Formal Concept Analysis the system could answer with a graphical display, such
as Figure 4.13 which helps the user by showing part of an internal classification of
the keywords. Each keyword has the number of documents that have that keyword
attached. Using Relational Concept Analysis a variety of queries, such as ‘find books
that have at least 2 keywords in the area of computer science and are written after
1985’ can be answered by presenting appropriate concept lattices. The details of an
implementation are again left for future research.

[1 document]

library science inform. sci. computer science

classification Internet

hardware
[2 documents]

[2 documents][1 document]

catalogs

Figure 4.13: A lattice for a database query

4.5 Terminological representation systems and semantic net-

works

An attempt to compare and combine Relational Concept Analysis with all aspects of
terminological representation systems (compare Baader (1992)) or semantic networks
(compare Kilgarriff (1995)) would be too comprehensive for this paper. Therefore only
some crucial aspects are mentioned in this section. Prediger (1996) shows how For-
mal Concept Analysis and terminological representation systems can be combined.
Burkert (1995) explains how terminological representation systems can be applied to
lexical databases. The most apparent difference between Relational Concept Anal-
ysis and terminological representation systems is the fact that Relational Concept
Analysis describes semantic relations in lexical databases whereas in terminological
representation systems relations are used to define concepts. For example, a mother
can be defined as a woman that has at least one child. In Relational Concept Anal-
ysis this means that there is a relation ‘HAS CHILD(≥0;≥1)’ between the concepts
‘mother’ and ‘child’ and no other subconcept of ‘woman’ that is not a subconcept
of ‘mother’ is in relation ‘HAS CHILD0’ to ‘child’. Obviously a quantification of re-
lations themselves is involved here that cannot be formalized in Relational Concept
Analysis so far. In terminological logic this quantifier is denoted by ∃R.C (Baader,
1992). The formal definition of ‘mother’ would be denoted by ‘mother := woman ∩
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∃ HAS-CHILD.human’. The other basic quantifier of terminological logic is denoted
by ∀R.C and can be used, for example, to define a ‘community’ as ‘community :=
set ∩ ∀ HAS-MEMBER.human’. This quantifier can be interpreted as a value re-
striction for a relation: the values of a HAS-MEMBER-relation from ‘community’
are in ‘human’. In Relational Concept Analysis this would have to be expressed by
the conditions that a concept ‘¬human’ exists, no ‘HAS MEMBER0’-relation holds
between ‘community’ and ‘¬human’, and all other subconcepts of ‘set’ that are not
subconcepts of ‘community’ are in ‘HAS MEMBER(≥0;≥1) relation to ‘¬human’. Both
quantifiers, ∃R.C and ∀R.c, cause problems for lexical databases modeled according
to Relational Concept Analysis since they cannot be implemented as quantifiers of
concept relations. They could be realized as conditions which would have to be evalu-
ated each time a relation is added to or deleted from a lexical database. The defining
character of quantified relations in terminological representation systems allows fur-
thermore the following example. A quartet is defined as a music group with exactly
four musicians as members (Burkert, 1995): ‘quartet = music group ∩ ||exactly-
four|| HAS-MEMBER.musician’. Again in Relational Concept Analysis a relation
HAS MEMBER(≥0;4) can be defined between ‘quartet’ and ‘musician’, but that does
not imply that this relation defines the concept ‘quartet’. Therefore, the only solution
to overcome these problems seems to be to use relations, such as ‘has exactly four
members’, as formal attributes and not as relations, such as HAS MEMBER(≥0;4).
This approach is similar to the attribute logic in Prediger’s (1996) work. Future
research might answer all these questions.

Other differences between Relational Concept Analysis and terminological represen-
tation systems include the larger variety of quantifiers in Relational Concept Analysis
and the fact that episodic (or assertional) knowledge is integrated into terminologi-
cal systems. The combination of a description language with an assertion language
is also a common feature of knowledge representation systems, such as KL-ONE
(Brachman & Schmolze, 1985) and semantic networks, such as DATR (according
to Kilgarriff (1995)). Inheritance rules (for example, ‘term subsumption languages’
(Burkert, 1995)) are usually used to store attributes as high as possible in the hier-
archy and to inherit them from superconcepts to subconcepts. A major difficulty is
posed by default attributes that hold for most of the objects, but not for all of them.
A discussion of these problems and a proposed solution can be found in Touretzky
(1986). For example, the attribute ‘CAN FLY’ can be stored as a default attribute
of the concept ‘bird’. It is then valid for all subconcepts of ‘bird’ if it is not explic-
itly negated for a concept, such as ‘penguin’. Our solution is to model ‘CAN FLY’
as a accidental attribute of the concept ‘bird’ according to Definition 4.4 using the
quantifier ||almost all|| or ||all typical||. The highest subconcepts of ‘bird’ that de-
note ‘flying birds’ are assigned ‘CAN FLY

(||all||;)’ whereas the highest subconcepts

of ‘bird’ that denote ‘not flying birds’ are assigned ‘CAN FLY(0;)’. This approach
allows correct attribution for all concepts. Some attributes must be stored in several
places with different quantifiers, but we think that this does not pose a problem
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since computer storage is becoming cheaper and database management software is
becoming faster. Only accidental attributes need to be stored for several concepts,
essential attributes that are used as formal attributes in a concept lattice are stored
only with their attribute concepts.

As a final conclusion it can be said that some of the differences between Relational
Concept Analysis and other knowledge representation systems seem to be in favor
of Relational Concept Analysis whereas others seem to be in favor of other systems.
Formal Concept Analysis has already been utilized for many applications (Ganter
& Wille, 1996). This dissertation demonstrates that Relational Concept Analysis
extends the scope of applications. Future research has to investigate whether the
remaining problems concerning implementations and applications of Relational Con-
cept Analysis can be solved.
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feld. LDV- Forum 5, pp. 31-36.

Knuth, D. E. (1993). The Stanford GraphBase: a Platform for Combinatorial Com-
puting. New York, Addison Wesley.

Lincke, Angelika; Nussbaumer, Markus; Portmann, Paul (1994). Studienbuch Lin-
guistik. Niemeyer, Tübingen.
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