
Transactions

SET08104 Database Systems

Copyright @ Napier University

Concurrency using Transactions

The goal in a ‘concurrent’ DBMS is to allow multiple users to
access the database simultaneously without interfering with
each other.

A problem with multiple users using the DBMS is that it may be
possible for two users to try and change data in the database
simultaneously. If this type of action is not carefully controlled,
inconsistencies are possible.

To control data access, we first need a concept to allow us to
encapsulate database accesses. Such encapsulation is called a
‘Transaction’.

Transactions

• Transaction (ACID)
– unit of logical work and recovery

• A - atomicity (for integrity)
• C - consistency preservation
• I - isolation
• D - durability

• Available in SQL
• Some applications require nested or long transactions

Transactions cont...

After work is performed in a transaction, two outcomes are
possible:

Commit - Any changes made during the transaction by this
transaction are committed to the database.
Abort - All the changes made during the transaction by this
transaction are not made to the database. The result of this
is as if the transaction was never started.

Transaction Schedules

A transaction schedule is a tabular representation of several
transactions executed over time. This is useful when examining
problem scenarios. Within the diagrams various nomenclatures
are used:

READ(a) - a read action on an attribute or data item called
‘a’.
WRITE(x,a) - a write action on an attribute or data item
called ‘a’, where the value ‘x’ is written into ‘a’.
tn (e.g. t1,t2,t10) - indicates the time at which something
occurred. The units are not important, but tn always occurs
before tn+1.

Schedules cont...

Consider transaction A, which loads a bank account balance X
(initially 20) and adds 10 pounds to it. Such a schedule would
look like this:

Time Transaction A
t1 TOTAL:=READ(X)

t2 TOTAL:=TOTAL+10

t3 WRITE(TOTAL,X)

Schedules cont...

Now consider that, at the same time as trans A runs, trans B
runs. Transaction B gives all accounts a 10% increase. Will X
be 32 or 33?

Schedules cont...
Time Transaction A Value

TOTAL
Transaction B Value

BALANCE
BONUS:=READ(X)

BONUS:=BONUS*110%
WRITE(BONUS,X)

TOTAL:=READ(X)
20

22

TOTAL:=TOTAL+10
WRITE(TOTAL,X)

22

20
30
30

t1
t2
t3
t4
t5
t6

Woops… X is 22! Depending on the interleaving, X can also be 32, 33,
or 30. Lets classify erroneous scenarios.

Lost Update scenario

Time Transaction A Transaction B
X = READ(R)

Y = READ(R)
t3 WRITE(X,R)
t4 WRITE(Y,R)

t1
t2

Transaction A’s update is lost at t4, because Transaction B overwrites
it. B missed A’s update at t4 as it got the value of R at t2.

Uncommitted Dependency

Time Transaction A Transaction B
WRITE(X,R)

t3 ABORT
Y = READ(R)

t1
t2

Transaction A is allowed to READ (or WRITE) item R which has been
updated by another transaction but not committed (and in this case
ABORTed).

Inconsistency Scenario
Transaction ATime X Y Z
Action SUM

Transaction B

t1 40 50 30 SUM:=READ(X)
SUM+=READ(Y)

SUM+=READ(Z)
SUM should have been 120

40
t2 40 50 30 90
t3 40 50 30 ACC1 = READ(Z)
t4 40 50 20 WRITE(ACC1-10,Z)
t5 40 50 20 ACC2 = READ(X)
t6 50 50 20 WRITE(ACC2+10,X)
t7 50 50 20 COMMIT
t8 50 50 20 110

Serializability

• A ‘schedule’ is the actual execution sequence of
two or more concurrent transactions.

• A schedule of two transactions T1 and T2 is
‘serializable’ if and only if executing this schedule
has the same effect as either T1;T2 or T2;T1.

Precedence Graph

In order to know that a particular transaction
schedule can be serialized, we can draw a
precedence graph. This is a graph of nodes and
vertices, where the nodes are the transaction names
and the vertices are attribute collisions.

The schedule is said to be serialised if and only if
there are no cycles in the resulting diagram.

Precedence Graph : Method

To draw one;
1. Draw a node for each transaction in the schedule
2. Where transaction T1 writes to an attribute which transaction

T2 has read from, draw a line pointing from T2 to T1.
3. Where transaction T1 writes to an attribute which transaction

T2 has written to, draw a line pointing from T2 to T1.
4. Where transaction T1 reads from an attribute which

transaction T2 has written to, draw a line pointing from T2 to
T1.

Example 1

Consider the following
Schedule:

Time T1 T2
t1 READ(A)
t2 READ(B)
t3 READ(A)
t4 READ(B)
t5 WRITE(x,B)
t6 WRITE(y,B)

T1 T2

B

B

Example 2
Consider the following

Schedule:
Time T1 T2 T3
t1 READ(A)

READ(A)
READ(B)

t6 WRITE(v,C)
t7 WRITE(w,B)

t2 READ(B)
t3
t4
t5 WRITE(x,A)

t8 WRITE(z,C)

T1

T2

T3

B

A

AC

Locking

A solution to enforcing serialisability?

• read (shareable) lock
• write (exclusive) lock
• coarse granularity

– easier processing
– less concurrency

• fine granularity
– more processing
– higher concurrency

Locking cont...

Many systems use locking mechanisms for concurrency control.
When a transaction needs an assurance that some object will
not change in some unpredictable manner, it acquires a lock on
that object.

A transaction holding a read lock is permitted to read an
object but not to change it.
More than one transaction can hold a read lock for the
same object.
Usually, only one transaction may hold a write lock on an
object.
On a transaction schedule, we use ‘S’ to indicate a shared
lock, and ‘X’ for an exclusive write lock.

Locking – Uncommitted Dependency

Locking solves the uncommitted dependency problem

Time Transaction A Transaction B Lock on R
Before => after

t1 write(p,R) - => X
t2 read(R) WAIT
t3 …WAIT… ABORT X => -
t4 read(R) GO - -> S

Deadlock

Deadlock can arise when locks are used, and causes all related
transactions to WAIT forever

Lock StateTime Transaction A Transaction B

t4 …WAIT… read(X) WAIT X X

X Y
t1 write(p,X) - => X

X
X

X

-
t2 write(q,Y) - => X
t3 read(Y) WAIT X

t5 …WAIT… …WAIT… X

Deadlock cont…

The `lost update’ senario results in deadlock with locks. So
does the `inconsistency’ scenario.

Time Transaction A Transaction B Lock on R
Before => after

t1 read(R) - => S
t2 read(R) S => S
t3 write(p,R) S
t4 …WAIT… write(q,R) S

t5 …WAIT… …WAIT… S

Deadlock Handling

• Deadlock avoidance
– pre-claim strategy used in operating systems
– not effective in database environments.

• Deadlock detection
– whenever a lock requests a wait, or on some perodic

basis.
– if a transaction is blocked due to another transaction,

make sure that the transaction is not blocked on the first
transaction, either directly or indirectly via another
transaction.

Deadlock Resolution

If a set of transactions is considered to be deadlocked:

1. choose a victim (e.g. the shortest-lived transaction)
2. rollback ‘victim’ transaction and restart it.

– The rollback terminates the transaction, undoing all its
updates and releasing all of its locks.

– A message is passed to the victim and depending on the
system the transaction may or may not be started again
automatically.

Two-Phase Locking

The presence of locks does not guarantee
serialisability. If a transaction is allowed to release
locks before the transaction has completed, and is
also allowed to acquire more (or even the same)
locks later then the benefit of locking is lost.

If all transactions obey the ‘two-phase locking
protocol’, then all possible interleaved executions are
guaranteed serialisable.

Two-Phase locking cont...

The two-phase locking protocol:

Before operating on any item, a transaction must acquire at
least a shared lock on that item. Thus no item can be
accessed without first obtaining the correct lock.
After releasing a lock, a transaction must never go on to
acquire any more locks.

The technical names for the two phases of the locking protocol
are the ‘lock-acquisition phase’ and the ‘lock-release phase’.

Other Database Consistency
Methods
Two-phase locking is not the only approach to enforcing
database consistency. Another method used in some DMBS is
timestamping. With timestamping, there are no locks to prevent
transactions seeing uncommitted changes, and all physical
updates are deferred to commit time.

locking synchronises the interleaved execution of a set of
transactions in such a way that it is equivalent to some
serial execution of those transactions.
timestamping synchronises that interleaved execution in
such a way that it is equivalent to a particular serial order -
the order of the timestamps.

Timestamping rules

The following rules are checked when transaction T attempts to
change a data item. If the rule indicates ABORT, then
transaction T is rolled back and aborted (and perhaps
restarted).

If T attempts to read a data item which has already been
written to by a younger transaction then ABORT T.
If T attempts to write a data item which has been read from
or written to by a younger transaction then ABORT T.

If transaction T aborts, then all other transactions which have
seen a data item written to by T must also abort. In addition,
other aborting transactions can cause further aborts on other
transactions. This is a ‘cascading rollback’.

	Transactions
	Concurrency using Transactions
	Transactions
	Transactions cont...
	Transaction Schedules
	Schedules cont...
	Schedules cont...
	Schedules cont...
	Lost Update scenario
	Uncommitted Dependency
	Inconsistency Scenario
	Serializability
	Precedence Graph
	Precedence Graph : Method
	Example 1
	Example 2
	Locking
	Locking cont...
	Locking – Uncommitted Dependency
	Deadlock
	Deadlock cont…
	Deadlock Handling
	Deadlock Resolution
	Two-Phase Locking
	Two-Phase locking cont...
	Other Database Consistency Methods
	Timestamping rules

