
Basics Wildcard and multipliers Special characters Negation Other functions Programming

Regular Expressions

SET09103 Advanced Web Technologies

School of Computing
Napier University, Edinburgh, UK

Module Leader: Uta Priss

2008

Copyright Napier University Regular Expressions Slide 1/17

Basics Wildcard and multipliers Special characters Negation Other functions Programming

Outline

Basics

Wildcard and multipliers

Special characters

Negation

Other functions

Programming

Copyright Napier University Regular Expressions Slide 2/17

Basics Wildcard and multipliers Special characters Negation Other functions Programming

Character by character match

lathe.

/the /

the cat

/the / /the / /the / /the / i

lathe and

? ?

The cat The cat

NO matchNO match

Note: “i” at the end means “ignore case”

Copyright Napier University Regular Expressions Slide 3/17

Basics Wildcard and multipliers Special characters Negation Other functions Programming

Wildcard and multipliers

. stands for “any character”.

Multipliers:

+ stands for “at least one character”
* stands for “any number of characters (including 0)”
? stands for “at most one character” (i.e. either none or once)
{n,m} stands for “at least n times, at most m times”

Copyright Napier University Regular Expressions Slide 4/17

Basics Wildcard and multipliers Special characters Negation Other functions Programming

Wildcard and multipliers

. stands for “any character”.

Multipliers:

+ stands for “at least one character”
* stands for “any number of characters (including 0)”
? stands for “at most one character” (i.e. either none or once)
{n,m} stands for “at least n times, at most m times”

Copyright Napier University Regular Expressions Slide 4/17

Basics Wildcard and multipliers Special characters Negation Other functions Programming

Examples:

/t.{1,2}e/

/t.e/

the

/t.*e/

te

/t.*e/

the

/t.*e/

thhhhhhe

/t.?e/

te

/t.?e/

the

/t.+e/

the

/t.+e/

thhhhhhe

/t.{1,2}e/

the thhe

Copyright Napier University Regular Expressions Slide 5/17

Basics Wildcard and multipliers Special characters Negation Other functions Programming

Exercise

What does /..\.19../ match:
“12.1000” or “123.1900” or “12.2000”

What does /hn*ell?o W...d/i match:
“Hello World” or “Hello Wood” or “Hell?o World”?

Copyright Napier University Regular Expressions Slide 6/17

Basics Wildcard and multipliers Special characters Negation Other functions Programming

Exercise

What does /..\.19../ match:
“12.1000” or “123.1900” or “12.2000”

What does /hn*ell?o W...d/i match:
“Hello World” or “Hello Wood” or “Hell?o World”?

Copyright Napier University Regular Expressions Slide 6/17

Basics Wildcard and multipliers Special characters Negation Other functions Programming

Special characters

\w word character (letter, digit or)
[a-zA-Z] letter
\W non-word character
[ˆa-zA-Z] not a letter
\d digit
\s space character (blank space, tab)
\b word boundary
ˆ beginning of line or string
$ end of line or string

Copyright Napier University Regular Expressions Slide 7/17

Basics Wildcard and multipliers Special characters Negation Other functions Programming

/^ .*$/

abc123

/\w/

abc123

/\d/

abc123

/[a−z]/

abc123

/[^a−z]/

the cat

/\s/

$a="the"
the cat

/\b$a\b/

the cat

/\b\w+\b/

the cat

Copyright Napier University Regular Expressions Slide 8/17

Basics Wildcard and multipliers Special characters Negation Other functions Programming

Exercise

Which matches two consecutive words:

/\b\w+\b\s+\b\w+\b/
or
/\w+\s+\w+/
or
/\b\w*\b\s*\b\w*\b/
?

Copyright Napier University Regular Expressions Slide 9/17

Basics Wildcard and multipliers Special characters Negation Other functions Programming

Negation

$word !∼/a/
means that “a” must not occur in $word at all.

$word =∼/[ˆa]/
means that $word must have one character which is not “a”.

Copyright Napier University Regular Expressions Slide 10/17

Basics Wildcard and multipliers Special characters Negation Other functions Programming

Examples

match

the

!~ /t/

No match

=~ /[^t]/

the

gst0202 gst0202;

=~ /[^\w]/ =~ /[^\w]/

No match

match

Copyright Napier University Regular Expressions Slide 11/17

Basics Wildcard and multipliers Special characters Negation Other functions Programming

Substitution

s/<.*?>//g

the table s/t/T/g The Table

the table s/t/T/ The table

s/<\/?p>//g<p>the table</p> the table

<p>the table</p> the table

<p>the table</p> s/<.*>//g

Copyright Napier University Regular Expressions Slide 12/17

Basics Wildcard and multipliers Special characters Negation Other functions Programming

Remembering patterns

Brackets are used for remembering patterns. The content of the
first set of brackets can be retrieved with \1. The second set of
brackets with \2, and so on.

Examples:

s/<p>(the table)</p>/\1/
/(.)\1/
s/(.)(.)/\2\1/

Copyright Napier University Regular Expressions Slide 13/17

Basics Wildcard and multipliers Special characters Negation Other functions Programming

Split and Join (Implode)

$oldstring = "the,cat,sat,on,the,mat";
@array = split(/,/,$oldstring);
print @array;
@array = ("the","cat","sat","on","the","mat")
$newstring = join(" ",@array);
$newstring ="the cat sat on the mat"

Copyright Napier University Regular Expressions Slide 14/17

Basics Wildcard and multipliers Special characters Negation Other functions Programming

Strategies

Instead of using one complicated regular expression, it is
sometimes easier to use several simpler regular expressions
combined with if statements.

For example: string starts with “a” and ends with “z”:

if ($string =∼ /^a.*z$/)
if ($string =∼ /^a/ and $string =∼ /z$/)

Copyright Napier University Regular Expressions Slide 15/17

Basics Wildcard and multipliers Special characters Negation Other functions Programming

More Strategies

If a string needs to be processed ...

I from left to right, one character or one word at a time
=⇒ split into array, then process array.

I from left to right, in some other regular manner
=⇒ substr() can be used instead of regular expression.

I by checking whether some pattern exists
=⇒ use regular expressions.

Copyright Napier University Regular Expressions Slide 16/17

Basics Wildcard and multipliers Special characters Negation Other functions Programming

Use of regular expressions in PHP

Searching:

if (preg match("/the /i", $line, $matches)) {
echo $line,"
 matches: ",$matches[0],"
";}

Replace:

$line = preg replace("/T/", ’t’, $line);

Split:

$words = preg split("/\s+/", $line);

Implode:

$newstring = implode(" ", $array);

Copyright Napier University Regular Expressions Slide 17/17

	Basics
	Basics

	Wildcard and multipliers
	Wildcard and multipliers

	Special characters
	Special characters

	Negation
	Negation

	Other functions
	Other functions

	Programming
	Programming

